Flexible linkers in CaMKII control the balance between activating and inhibitory autophosphorylation

  1. Moitrayee Bhattacharyya
  2. Young Kwang Lee
  3. Serena Muratcioglu
  4. Baiyu Qiu
  5. Priya Nyayapati
  6. Howard Schulman
  7. Jay T Groves  Is a corresponding author
  8. John Kuriyan  Is a corresponding author
  1. University of California, Berkeley, United States
  2. San Diego State University, United States
  3. Panorama Institute of Molecular Medicine, United States

Abstract

The many variants of human Ca2+/calmodulin-dependent protein kinase II (CaMKII) differ in the lengths and sequences of disordered linkers connecting the kinase domains to the oligomeric hub of the holoenzyme. CaMKII activity depends on the balance between activating and inhibitory autophosphorylation (on Thr 286 and Thr 305/306, respectively, in the human a isoform). Variation in the linkers could alter transphosphorylation rates within a holoenzyme and the balance of autophosphorylation outcomes. We show, using mammalian-cell expression and a single-molecule assay, that the balance of autophosphorylation is flipped between CaMKII variants with longer and shorter linkers. For the principal isoforms in the brain, CaMKII-a, with a ~30 residue linker, readily acquires activating autophosphorylation, while CaMKII-b, with a ~200 residue linker, is biased towards inhibitory autophosphorylation. Our results show how the responsiveness of CaMKII holoenzymes to calcium signals can be tuned by varying the relative levels of isoforms with long and short linkers.

Data availability

All data generated or analyzed during this study are summarized in the manuscript, figures, appendix, and supplementary files. The in-house Matlab programs that are used for data analysis are provided as Source code file 1 and is open-access.

Article and author information

Author details

  1. Moitrayee Bhattacharyya

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2168-1541
  2. Young Kwang Lee

    Department of Molecular and Cell Biology, San Diego State University, San Diego, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0056-6357
  3. Serena Muratcioglu

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Baiyu Qiu

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  5. Priya Nyayapati

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Howard Schulman

    Panorama Institute of Molecular Medicine, Sunnyvale, United States
    Competing interests
    No competing interests declared.
  7. Jay T Groves

    QB3, University of California, Berkeley, Berkeley, United States
    For correspondence
    JTGroves@lbl.gov
    Competing interests
    No competing interests declared.
  8. John Kuriyan

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    jkuriyan@mac.com
    Competing interests
    John Kuriyan, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4414-5477

Funding

National Institute of General Medical Sciences (K99 GM 126145)

  • Moitrayee Bhattacharyya

Howard Hughes Medical Institute

  • John Kuriyan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tony Hunter, Salk Institute for Biological Studies, United States

Version history

  1. Received: November 15, 2019
  2. Accepted: March 6, 2020
  3. Accepted Manuscript published: March 9, 2020 (version 1)
  4. Version of Record published: April 8, 2020 (version 2)

Copyright

© 2020, Bhattacharyya et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,505
    views
  • 522
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Moitrayee Bhattacharyya
  2. Young Kwang Lee
  3. Serena Muratcioglu
  4. Baiyu Qiu
  5. Priya Nyayapati
  6. Howard Schulman
  7. Jay T Groves
  8. John Kuriyan
(2020)
Flexible linkers in CaMKII control the balance between activating and inhibitory autophosphorylation
eLife 9:e53670.
https://doi.org/10.7554/eLife.53670

Share this article

https://doi.org/10.7554/eLife.53670

Further reading

    1. Biochemistry and Chemical Biology
    Zheng Ruan, Junuk Lee ... Wei Lü
    Research Article

    Protein phosphorylation is one of the major molecular mechanisms regulating protein activity and function throughout the cell. Pannexin 1 (PANX1) is a large-pore channel permeable to ATP and other cellular metabolites. Its tyrosine phosphorylation and subsequent activation have been found to play critical roles in diverse cellular conditions, including neuronal cell death, acute inflammation, and smooth muscle contraction. Specifically, the non-receptor kinase Src has been reported to phosphorylate Tyr198 and Tyr308 of mouse PANX1 (equivalent to Tyr199 and Tyr309 of human PANX1), resulting in channel opening and ATP release. Although the Src-dependent PANX1 activation mechanism has been widely discussed in the literature, independent validation of the tyrosine phosphorylation of PANX1 has been lacking. Here, we show that commercially available antibodies against the two phosphorylation sites mentioned above—which were used to identify endogenous PANX1 phosphorylation at these two sites—are nonspecific and should not be used to interpret results related to PANX1 phosphorylation. We further provide evidence that neither tyrosine residue is a major phosphorylation site for Src kinase in heterologous expression systems. We call on the field to re-examine the existing paradigm of tyrosine phosphorylation-dependent activation of the PANX1 channel.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.