A critical re-evaluation of fMRI signatures of motor sequence learning

  1. Eva Berlot
  2. Nicola J Popp
  3. Jörn Diedrichsen  Is a corresponding author
  1. University of Western Ontario, Canada

Abstract

Despite numerous studies, there is little agreement about what brain changes accompany motor sequence learning, partly because of a general publication bias that favors novel results. We therefore decided to systematically reinvestigate proposed functional magnetic resonance imaging correlates of motor learning in a preregistered longitudinal study with four scanning sessions over 5 weeks of training. Activation decreased more for trained than untrained sequences in premotor and parietal areas, without any evidence of learning-related activation increases. Premotor and parietal regions also exhibited changes in the fine-grained, sequence-specific activation patterns early in learning, which stabilized later. No changes were observed in the primary motor cortex (M1). Overall, our study provides evidence that human motor sequence learning occurs outside of M1. Furthermore, it shows that we cannot expect to find activity increases as an indicator for learning, making subtle changes in activity patterns across weeks the most promising fMRI correlate of training-induced plasticity.

Data availability

fMRI data and analysis pipelines have been deposted to OpenNeuro, under the accession number ds002776. Analysis code is available on GitHub at https://github.com/eberlot/motor_sequence_learning.git

The following data sets were generated

Article and author information

Author details

  1. Eva Berlot

    The Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    No competing interests declared.
  2. Nicola J Popp

    The Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    No competing interests declared.
  3. Jörn Diedrichsen

    The Brain and Mind Institute, Department of Statistical and Actuarial Sciences, Department of Computer Science, University of Western Ontario, London, Canada
    For correspondence
    jdiedric@uwo.ca
    Competing interests
    Jörn Diedrichsen, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0264-8532

Funding

Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant (RGPIN-2016-04890))

  • Jörn Diedrichsen

Canada First Research Excellence Fund (BrainsCAN)

  • Jörn Diedrichsen

Ontario Trillium Foundation (Graduate Student Scholarship (to EB))

  • Jörn Diedrichsen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marius V Peelen, Radboud University, Netherlands

Ethics

Human subjects: Informed consent and data usage agreement was obtained from participants prior to the onset of the study. It was emphasized that participants could withdraw from the study at any timepoint. The experimental procedures were approved by the Ethics Committee at Western University (HSREB File Number: 107061).

Version history

  1. Received: January 17, 2020
  2. Accepted: April 28, 2020
  3. Accepted Manuscript published: May 13, 2020 (version 1)
  4. Version of Record published: June 2, 2020 (version 2)

Copyright

© 2020, Berlot et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,714
    views
  • 490
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eva Berlot
  2. Nicola J Popp
  3. Jörn Diedrichsen
(2020)
A critical re-evaluation of fMRI signatures of motor sequence learning
eLife 9:e55241.
https://doi.org/10.7554/eLife.55241

Share this article

https://doi.org/10.7554/eLife.55241

Further reading

    1. Neuroscience
    Kenta Abe, Yuki Kambe ... Tatsuo Sato
    Research Article

    Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.

    1. Neuroscience
    Baiwei Liu, Zampeta-Sofia Alexopoulou, Freek van Ede
    Research Article

    Working memory enables us to bridge past sensory information to upcoming future behaviour. Accordingly, by its very nature, working memory is concerned with two components: the past and the future. Yet, in conventional laboratory tasks, these two components are often conflated, such as when sensory information in working memory is encoded and tested at the same location. We developed a task in which we dissociated the past (encoded location) and future (to-be-tested location) attributes of visual contents in working memory. This enabled us to independently track the utilisation of past and future memory attributes through gaze, as observed during mnemonic selection. Our results reveal the joint consideration of past and future locations. This was prevalent even at the single-trial level of individual saccades that were jointly biased to the past and future. This uncovers the rich nature of working memory representations, whereby both past and future memory attributes are retained and can be accessed together when memory contents become relevant for behaviour.