LUZP1, a novel regulator of primary cilia and the actin cytoskeleton, is a contributing factor in Townes-Brocks Syndrome

Abstract

Primary cilia are sensory organelles crucial for cell signaling during development and organ homeostasis. Cilia arise from centrosomes and their formation and function is governed by numerous factors. Through our studies on Townes-Brocks Syndrome (TBS), a rare disease linked to abnormal cilia formation in human fibroblasts, we uncovered the leucine-zipper protein LUZP1 as an interactor of truncated SALL1, a dominantly-acting protein causing the disease. Using TurboID proximity labeling and pulldowns, we show that LUZP1 associates with factors linked to centrosome and actin filaments. Here, we show that LUZP1 is a cilia regulator. It localizes around the centrioles and to actin cytoskeleton. Loss of LUZP1 reduces F-actin levels, facilitates ciliogenesis and alters Sonic Hedgehog signaling, pointing to a key role in cytoskeleton-cilia interdependency. Truncated SALL1 increases the ubiquitin proteasome-mediated degradation of LUZP1. Together with other factors, alterations in LUZP1 may be contributing to TBS etiology.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Laura Bozal-Basterra

    Functional Genomics, CIC bioGUNE, Derio, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. María Gonzalez-Santamarta

    Functional Genomics, CIC bioGUNE, Derio, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Veronica Muratore

    Functional Genomics, CIC bioGUNE, Derio, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Aitor Bermejo-Arteagabeitia

    Functional Genomics, CIC bioGUNE, Derio, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Carolina Da Fonseca

    Functional Genomics, CIC bioGUNE, Derio, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Orhi Barroso-Gomila

    Functional Genomics, CIC bioGUNE, Derio, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Mikel Azkargorta

    Proteomics Platform, CIC bioGUNE, Derio, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9115-3202
  8. Ibon Iloro

    Proteomics Platform, CIC bioGUNE, Derio, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Olatz Pampliega

    Department of Neurosciences, Achucarro Basque Center for Neuros, Leioa, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7924-6374
  10. Ricardo Andrade

    Analytical & High Resolution Biomedical Microscopy Core Facility, University of the Basque Country (UPV/EHU), Leioa, Spain
    Competing interests
    The authors declare that no competing interests exist.
  11. Natalia Martín-Martín

    Proteomics Unit, CIC bioGUNE, Derio, Spain
    Competing interests
    The authors declare that no competing interests exist.
  12. Tess C Branon

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Alice Y Ting

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8277-5226
  14. Jose A Rodríguez

    Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
    Competing interests
    The authors declare that no competing interests exist.
  15. Arkaitz Carracedo

    Proteomics Unit, CIC bioGUNE, Derio, Spain
    Competing interests
    The authors declare that no competing interests exist.
  16. Felix Elortza

    Proteomics Platform, CIC bioGUNE, Derio, Spain
    Competing interests
    The authors declare that no competing interests exist.
  17. James D Sutherland

    Functional Genomics, CIC bioGUNE, Derio, Spain
    For correspondence
    jsutherland@cicbiogune.es
    Competing interests
    The authors declare that no competing interests exist.
  18. Rosa Barrio

    Functional Genomics, CIC bioGUNE, Derio, Spain
    For correspondence
    rbarrio@cicbiogune.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9663-0669

Funding

Ministerio de Economía y Competitividad (BFU2017-84653-P)

  • Rosa Barrio

Asociacion Espanola Contra el Cancer (IDEAS175CARR)

  • Arkaitz Carracedo

Asociacion Espanola Contra el Cancer (GCTRA18006CARR)

  • Arkaitz Carracedo

La Caixa Foundation (HR17-00094)

  • Arkaitz Carracedo

European Commission (336343)

  • Arkaitz Carracedo

European Commission (PoC 754627)

  • Arkaitz Carracedo

European Commission (819242)

  • Arkaitz Carracedo

Ministerio de Economía y Competitividad (SEV-2016-0644)

  • Arkaitz Carracedo
  • Felix Elortza
  • James D Sutherland
  • Rosa Barrio

Ministerio de Economía y Competitividad (SAF2017-90900-REDT)

  • Rosa Barrio

European Commission (765445-EU)

  • Orhi Barroso-Gomila
  • James D Sutherland
  • Rosa Barrio

Basque Government (IT634-13)

  • Arkaitz Carracedo

Asociacion Espanola Contra el Cancer (POSTD19048BOZA)

  • Arkaitz Carracedo

Instituto de Salud Carlos III (PT13/0001/0027)

  • Arkaitz Carracedo

Basque Government (IKERTALDE IT1106-16)

  • Arkaitz Carracedo

Ministerio de Ciencia, Investigacion y Universidades (SAF2016-79381-R)

  • Arkaitz Carracedo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lotte Pedersen, University of Copenhagen, Denmark

Ethics

Human subjects: The use of human samples in this study was approved by the institutional review board (Ethics Committee at CIC bioGUNE) and appropriate informed consent was obtained from human subjects or their parents. protocol P-CBG-CBBA-2111)

Version history

  1. Received: February 12, 2020
  2. Accepted: June 18, 2020
  3. Accepted Manuscript published: June 18, 2020 (version 1)
  4. Version of Record published: July 15, 2020 (version 2)

Copyright

© 2020, Bozal-Basterra et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,531
    views
  • 546
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura Bozal-Basterra
  2. María Gonzalez-Santamarta
  3. Veronica Muratore
  4. Aitor Bermejo-Arteagabeitia
  5. Carolina Da Fonseca
  6. Orhi Barroso-Gomila
  7. Mikel Azkargorta
  8. Ibon Iloro
  9. Olatz Pampliega
  10. Ricardo Andrade
  11. Natalia Martín-Martín
  12. Tess C Branon
  13. Alice Y Ting
  14. Jose A Rodríguez
  15. Arkaitz Carracedo
  16. Felix Elortza
  17. James D Sutherland
  18. Rosa Barrio
(2020)
LUZP1, a novel regulator of primary cilia and the actin cytoskeleton, is a contributing factor in Townes-Brocks Syndrome
eLife 9:e55957.
https://doi.org/10.7554/eLife.55957

Share this article

https://doi.org/10.7554/eLife.55957

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.

    1. Cell Biology
    Jun Yang, Shitian Zou ... Xiaochun Bai
    Research Article

    Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.