Harmful DNA:RNA hybrids are formed in cis and in a Rad51-independent manner

  1. Juan Lafuente-Barquero
  2. Maria Luisa García-Rubio
  3. Marta San Martin-Alonso
  4. Belén Gómez-González  Is a corresponding author
  5. Andrés Aguilera  Is a corresponding author
  1. Biotech Research and Innovation Centre-BRIC, University of Copenhagen, Denmark
  2. CABIMER, Universidad de Sevilla, Spain
  3. Leiden University Medical Center, Netherlands

Abstract

DNA:RNA hybrids constitute a well-known source of recombinogenic DNA damage. The current literature is in agreement with DNA:RNA hybrids being produced co-transcriptionally by the invasion of the nascent RNA molecule produced in cis with its DNA template. However, it has also been suggested that recombinogenic DNA:RNA hybrids could be facilitated by the invasion of RNA molecules produced in trans in a Rad51-mediated reaction. Here, we tested the possibility that such DNA:RNA hybrids constitute a source of recombinogenic DNA damage taking advantage of Rad51-independent single-strand annealing (SSA) assays in the yeast Saccharomyces cerevisiae. For this, we used new constructs designed to induce expression of mRNA transcripts in trans with respect to the SSA system. We show that unscheduled and recombinogenic DNA:RNA hybrids that trigger the SSA event are formed in cis during transcription and in a Rad51-independent manner. We found no evidence that such hybrids form in trans and in a Rad51-dependent manner.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all graphs.

Article and author information

Author details

  1. Juan Lafuente-Barquero

    Department of Health and Medical Sciences, Biotech Research and Innovation Centre-BRIC, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  2. Maria Luisa García-Rubio

    Department of Molecular Biology, CABIMER, Universidad de Sevilla, Seville, Spain
    Competing interests
    No competing interests declared.
  3. Marta San Martin-Alonso

    Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    No competing interests declared.
  4. Belén Gómez-González

    Department of Genetics, CABIMER, Universidad de Sevilla, Sevilla, Spain
    For correspondence
    gomezb@us.es
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1655-8407
  5. Andrés Aguilera

    Department of Molecular Biology, CABIMER, Universidad de Sevilla, Seville, Spain
    For correspondence
    andres.aguilera@cabimer.es
    Competing interests
    Andrés Aguilera, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4782-1714

Funding

Ministerio de Economía y Competitividad (BFU2016-75058-P)

  • Andrés Aguilera

European Union

  • Andrés Aguilera

Spanish Association Against Cancer

  • Belén Gómez-González

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wolf-Dietrich Heyer, University of California, Davis, United States

Version history

  1. Received: March 5, 2020
  2. Accepted: August 3, 2020
  3. Accepted Manuscript published: August 4, 2020 (version 1)
  4. Version of Record published: August 17, 2020 (version 2)

Copyright

© 2020, Lafuente-Barquero et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,176
    views
  • 283
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juan Lafuente-Barquero
  2. Maria Luisa García-Rubio
  3. Marta San Martin-Alonso
  4. Belén Gómez-González
  5. Andrés Aguilera
(2020)
Harmful DNA:RNA hybrids are formed in cis and in a Rad51-independent manner
eLife 9:e56674.
https://doi.org/10.7554/eLife.56674

Share this article

https://doi.org/10.7554/eLife.56674

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    F Javier DeHaro-Arbona, Charalambos Roussos ... Sarah Bray
    Research Article

    Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.