CD56 regulates human NK cell cytotoxicity through Pyk2

  1. Justin T Gunesch
  2. Amera L Dixon
  3. Tasneem AM Ebrahim
  4. Melissa Berrien-Elliott
  5. Swetha Tatineni
  6. Tejas Kumar
  7. Everardo Hegewisch-Solloa
  8. Todd A Fehniger
  9. Emily M Mace  Is a corresponding author
  1. Baylor College of Medicine, United States
  2. Columbia University, United States
  3. Barnard College, United States
  4. Washington University, United States
  5. Rice University, United States
  6. Washington University School of Medicine, United States

Abstract

Human natural killer (NK) cells are defined as CD56+CD3−. Despite its ubiquitous expression on human NK cells the role of CD56 (NCAM) in human NK cell cytotoxic function has not been defined. In non-immune cells, NCAM can induce signaling, mediate adhesion, and promote exocytosis through interactions with focal adhesion kinase (FAK). Here we demonstrate that deletion of CD56 on the NK92 cell line leads to impaired cytotoxic function. CD56-knockout (KO) cells fail to polarize during immunological synapse (IS) formation and have severely impaired exocytosis of lytic granules. Phosphorylation of the FAK family member Pyk2 at tyrosine 402 is decreased in NK92 CD56-KO cells, demonstrating a functional link between CD56 and signaling in human NK cells. Cytotoxicity, lytic granule exocytosis, and the phosphorylation of Pyk2 are rescued by the reintroduction of CD56. These data highlight a novel functional role for CD56 in stimulating exocytosis and promoting cytotoxicity in human NK cells.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Justin T Gunesch

    Pediatrics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Amera L Dixon

    Pediatrics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Tasneem AM Ebrahim

    Biology, Barnard College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Melissa Berrien-Elliott

    Medicine, Washington University, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Swetha Tatineni

    Rice University, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tejas Kumar

    Pediatrics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Everardo Hegewisch-Solloa

    Pediatrics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Todd A Fehniger

    Dept of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8705-2887
  9. Emily M Mace

    Pediatrics, Columbia University, New York, United States
    For correspondence
    em3375@cumc.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0226-7393

Funding

National Institutes of Health (R01AI137073)

  • Emily M Mace

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael L Dustin, University of Oxford, United Kingdom

Ethics

Human subjects: Peripheral blood NK cells were obtained in accordance with the Declaration of Helsinki with the written and informed consent of all participants under the guidance of the Institutional Review Boards of Baylor College of Medicine (IRB H-30487) and Columbia University (IRB AAAR7377).

Version history

  1. Received: March 28, 2020
  2. Accepted: June 7, 2020
  3. Accepted Manuscript published: June 8, 2020 (version 1)
  4. Version of Record published: July 13, 2020 (version 2)

Copyright

© 2020, Gunesch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,865
    views
  • 688
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Justin T Gunesch
  2. Amera L Dixon
  3. Tasneem AM Ebrahim
  4. Melissa Berrien-Elliott
  5. Swetha Tatineni
  6. Tejas Kumar
  7. Everardo Hegewisch-Solloa
  8. Todd A Fehniger
  9. Emily M Mace
(2020)
CD56 regulates human NK cell cytotoxicity through Pyk2
eLife 9:e57346.
https://doi.org/10.7554/eLife.57346

Share this article

https://doi.org/10.7554/eLife.57346

Further reading

    1. Cell Biology
    Gang Liu, Yunxuan Hou ... Xiumei Jiang
    Research Article

    Erythropoiesis and megakaryopoiesis are stringently regulated by signaling pathways. However, the precise molecular mechanisms through which signaling pathways regulate key transcription factors controlling erythropoiesis and megakaryopoiesis remain partially understood. Herein, we identified heat shock cognate B (HSCB), which is well known for its iron–sulfur cluster delivery function, as an indispensable protein for friend of GATA 1 (FOG1) nuclear translocation during erythropoiesis of K562 human erythroleukemia cells and cord-blood-derived human CD34+CD90+hematopoietic stem cells (HSCs), as well as during megakaryopoiesis of the CD34+CD90+HSCs. Mechanistically, HSCB could be phosphorylated by phosphoinositol-3-kinase (PI3K) to bind with and mediate the proteasomal degradation of transforming acidic coiled-coil containing protein 3 (TACC3), which otherwise detained FOG1 in the cytoplasm, thereby facilitating FOG1 nuclear translocation. Given that PI3K is activated during both erythropoiesis and megakaryopoiesis, and that FOG1 is a key transcription factor for these processes, our findings elucidate an important, previously unrecognized iron–sulfur cluster delivery independent function of HSCB in erythropoiesis and megakaryopoiesis.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.