Abstract

Little is known about co-transcriptional or post-transcriptional regulatory mechanisms linking noncoding variation to variation in organismal traits. To begin addressing this gap, we used 3' Seq to study the impact of genetic variation on alternative polyadenylation (APA) in the nuclear and total mRNA fractions of 52 HapMap Yoruba human lymphoblastoid cell lines. We mapped 602 APA quantitative trait loci (apaQTLs) at 10% FDR, of which 152 were nuclear specific. Effect sizes at intronic apaQTLs are negatively correlated with eQTL effect sizes. These observations suggest genetic variants can decrease mRNA expression levels by increasing usage of intronic PAS. We also identified 24 apaQTLs associated with protein levels, but not mRNA expression. Finally, we found that 19% of apaQTLs can be associated with disease. Thus, our work demonstrates that APA links genetic variation to variation in gene expression, protein expression, and disease risk, and reveals uncharted modes of genetic regulation.

Data availability

Fastq files and PAS annotations are available at GEO under accession GSE138197. All reproducible scripts and software versions can be found at through Zenodo with doi:10.5281/zenodo.3905372

The following data sets were generated

Article and author information

Author details

  1. Briana E Mittleman

    Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4979-4652
  2. Sebastian Pott

    Department of Human Genetics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4118-6150
  3. Shane Warland

    Section of Genetic Medicine, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tony Zeng

    Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zepeng Mu

    Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7717-3247
  6. Mayher Kaur

    Section of Genetic Medicine, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yoav Gilad

    Department of Medicine, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8284-8926
  8. Yang Li

    Department of Medicine, Department of Human Genetics, University of Chicago, Chicago, United States
    For correspondence
    yangili1@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0736-251X

Funding

National Institutes of Health (T32 GM09197)

  • Briana E Mittleman

National Institutes of Health (F31HL149259)

  • Briana E Mittleman

National Institutes of Health (R01GM130738)

  • Yang Li

National Institutes of Health (K12 HL119995)

  • Sebastian Pott

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gene W Yeo, University of California, San Diego, United States

Version history

  1. Received: April 20, 2020
  2. Accepted: June 17, 2020
  3. Accepted Manuscript published: June 25, 2020 (version 1)
  4. Version of Record published: July 6, 2020 (version 2)

Copyright

© 2020, Mittleman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,786
    views
  • 534
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Briana E Mittleman
  2. Sebastian Pott
  3. Shane Warland
  4. Tony Zeng
  5. Zepeng Mu
  6. Mayher Kaur
  7. Yoav Gilad
  8. Yang Li
(2020)
Alternative polyadenylation mediates genetic regulation of gene expression
eLife 9:e57492.
https://doi.org/10.7554/eLife.57492

Share this article

https://doi.org/10.7554/eLife.57492

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Donghui Yan, Bowen Hu ... Qiongshi Lu
    Research Article

    Rich data from large biobanks, coupled with increasingly accessible association statistics from genome-wide association studies (GWAS), provide great opportunities to dissect the complex relationships among human traits and diseases. We introduce BADGERS, a powerful method to perform polygenic score-based biobank-wide association scans. Compared to traditional approaches, BADGERS uses GWAS summary statistics as input and does not require multiple traits to be measured in the same cohort. We applied BADGERS to two independent datasets for late-onset Alzheimer’s disease (AD; n=61,212). Among 1738 traits in the UK biobank, we identified 48 significant associations for AD. Family history, high cholesterol, and numerous traits related to intelligence and education showed strong and independent associations with AD. Furthermore, we identified 41 significant associations for a variety of AD endophenotypes. While family history and high cholesterol were strongly associated with AD subgroups and pathologies, only intelligence and education-related traits predicted pre-clinical cognitive phenotypes. These results provide novel insights into the distinct biological processes underlying various risk factors for AD.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Jason E Stajich, Brian Lovett ... Carolyn Elya
    Research Article

    Despite over a century of observations, the obligate insect parasites within the order Entomophthorales remain poorly characterized at the genetic level. In this manuscript, we present a genome for a laboratory-tractable Entomophthora muscae isolate that infects fruit flies. Our E. muscae assembly is 1.03 Gb, consists of 7810 contigs and contains 81.3% complete fungal BUSCOs. Using a comparative approach with recent datasets from entomophthoralean fungi, we show that giant genomes are the norm within Entomophthoraceae owing to extensive, but not recent, Ty3 retrotransposon activity. In addition, we find that E. muscae and its closest allies possess genes that are likely homologs to the blue-light sensor white-collar 1, a Neurospora crassa gene that has a well-established role in maintaining circadian rhythms. We uncover evidence that E. muscae diverged from other entomophthoralean fungi by expansion of existing families, rather than loss of particular domains, and possesses a potentially unique suite of secreted catabolic enzymes, consistent with E. muscae’s species-specific, biotrophic lifestyle. Finally, we offer a head-to-head comparison of morphological and molecular data for species within the E. muscae species complex that support the need for taxonomic revision within this group. Altogether, we provide a genetic and molecular foundation that we hope will provide a platform for the continued study of the unique biology of entomophthoralean fungi.