Breakage of the oligomeric CaMKII hub by the regulatory segment of the kinase

  1. Deepti Karandur
  2. Moitrayee Bhattacharyya
  3. Zijie Xia
  4. Young Kwang Lee
  5. Serena Muratcioglu
  6. Darren McAffee
  7. Ethan D McSpadden
  8. Baiyu Qiu
  9. Jay T Groves
  10. Evan R Williams  Is a corresponding author
  11. John Kuriyan  Is a corresponding author
  1. Howard Hughes Medical Institute, University of California, Berkeley, United States
  2. University of California, Berkeley, United States
  3. San Diego State University, United States

Abstract

Ca2+/calmodulin dependent protein kinase II (CaMKII) is an oligomeric enzyme with crucial roles in neuronal signaling and cardiac function. Previously, we showed that activation of CaMKII triggers the exchange of subunits between holoenzymes, potentially increasing the spread of the active state (Stratton et al. 2014; Bhattacharyya et al. 2016). Using mass spectrometry, we show now that unphosphorylated and phosphorylated peptides derived from the CaMKII-α regulatory segment bind to the CaMKII-α hub and break it into smaller oligomers. Molecular dynamics simulations show that the regulatory segments dock spontaneously at the interface between hub subunits, trapping large fluctuations in hub structure. Single-molecule fluorescence intensity analysis of CaMKII-α expressed in mammalian cells shows that activation of CaMKII-α results in the destabilization of the holoenzyme. Our results suggest that release of the regulatory segment by activation and phosphorylation allows it to destabilize the hub, producing smaller assemblies that might reassemble to form new holoenzymes.

Data availability

Molecular dynamics simulation trajectories are available at Pittsburg Supercomputing Center's data storage facility and are accessible at the following link: https://psc.edu/anton-project-summaries?id=3071&pid=35. Mass spectrometry data (Figure 2-4) is available via the MassIVE database under identifier MSV000086103

The following data sets were generated

Article and author information

Author details

  1. Deepti Karandur

    Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6949-6337
  2. Moitrayee Bhattacharyya

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2168-1541
  3. Zijie Xia

    Department of Chemistry, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Young Kwang Lee

    Department of Molecular and Cell Biology, San Diego State University, San Diego, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0056-6357
  5. Serena Muratcioglu

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Darren McAffee

    Department of Molecular and Cell Biology, Department of Chemistry, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  7. Ethan D McSpadden

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  8. Baiyu Qiu

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  9. Jay T Groves

    QB3, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  10. Evan R Williams

    Department of Chemistry, University of California, Berkeley, Berkeley, United States
    For correspondence
    erw@berkeley.edu
    Competing interests
    No competing interests declared.
  11. John Kuriyan

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    jkuriyan@mac.com
    Competing interests
    John Kuriyan, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4414-5477

Funding

National Institute of General Medical Sciences (K99 GM 126145)

  • Moitrayee Bhattacharyya

National Science Foundation (CHE-1609866)

  • Zijie Xia

National Science Foundation (CHE-1609866)

  • Evan R Williams

Howard Hughes Medical Institute

  • John Kuriyan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Leslie C Griffith, Brandeis University, United States

Version history

  1. Received: April 15, 2020
  2. Accepted: September 8, 2020
  3. Accepted Manuscript published: September 9, 2020 (version 1)
  4. Accepted Manuscript updated: September 10, 2020 (version 2)
  5. Version of Record published: October 6, 2020 (version 3)

Copyright

© 2020, Karandur et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,996
    views
  • 277
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Deepti Karandur
  2. Moitrayee Bhattacharyya
  3. Zijie Xia
  4. Young Kwang Lee
  5. Serena Muratcioglu
  6. Darren McAffee
  7. Ethan D McSpadden
  8. Baiyu Qiu
  9. Jay T Groves
  10. Evan R Williams
  11. John Kuriyan
(2020)
Breakage of the oligomeric CaMKII hub by the regulatory segment of the kinase
eLife 9:e57784.
https://doi.org/10.7554/eLife.57784

Share this article

https://doi.org/10.7554/eLife.57784

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Chananchida Sang-aram, Robin Browaeys ... Yvan Saeys
    Research Article

    Spatial transcriptomics (ST) technologies allow the profiling of the transcriptome of cells while keeping their spatial context. Since most commercial untargeted ST technologies do not yet operate at single-cell resolution, computational methods such as deconvolution are often used to infer the cell type composition of each sequenced spot. We benchmarked 11 deconvolution methods using 63 silver standards, 3 gold standards, and 2 case studies on liver and melanoma tissues. We developed a simulation engine called synthspot to generate silver standards from single-cell RNA-sequencing data, while gold standards are generated by pooling single cells from targeted ST data. We evaluated methods based on their performance, stability across different reference datasets, and scalability. We found that cell2location and RCTD are the top-performing methods, but surprisingly, a simple regression model outperforms almost half of the dedicated spatial deconvolution methods. Furthermore, we observe that the performance of all methods significantly decreased in datasets with highly abundant or rare cell types. Our results are reproducible in a Nextflow pipeline, which also allows users to generate synthetic data, run deconvolution methods and optionally benchmark them on their dataset (https://github.com/saeyslab/spotless-benchmark).

    1. Computational and Systems Biology
    Maksim Kleverov, Daria Zenkova ... Alexey A Sergushichev
    Research Article

    Transcriptomic profiling became a standard approach to quantify a cell state, which led to accumulation of huge amount of public gene expression datasets. However, both reuse of these datasets or analysis of newly generated ones requires significant technical expertise. Here we present Phantasus - a user-friendly web-application for interactive gene expression analysis which provides a streamlined access to more than 96000 public gene expression datasets, as well as allows analysis of user-uploaded datasets. Phantasus integrates an intuitive and highly interactive JavaScript-based heatmap interface with an ability to run sophisticated R-based analysis methods. Overall Phantasus allows users to go all the way from loading, normalizing and filtering data to doing differential gene expression and downstream analysis. Phantasus can be accessed on-line at https://alserglab.wustl.edu/phantasus or can be installed locally from Bioconductor (https://bioconductor.org/packages/phantasus). Phantasus source code is available at https://github.com/ctlab/phantasus under MIT license.