EDF1 coordinates cellular responses to ribosome collisions

  1. Niladri K Sinha
  2. Alban Ordureau
  3. Katharina Best
  4. James A Saba
  5. Boris Zinshteyn
  6. Elayanambi Sundaramoorthy
  7. Amit Fulzele
  8. Danielle M Garshott
  9. Timo Denk
  10. Matthias Thoms
  11. Joao A Paulo
  12. Wade Harper
  13. Eric J Bennett
  14. Roland Beckmann  Is a corresponding author
  15. Rachel Green  Is a corresponding author
  1. Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, United States
  2. Harvard Medical School, United States
  3. Ludwig Maximilian University of Munich, Germany
  4. University of California, San Diego, United States
  5. Gene Center, Ludwig-Maximilians-Universität München, Germany

Abstract

Translation of aberrant mRNAs induces ribosomal collisions, thereby triggering pathways for mRNA and nascent peptide degradation and ribosomal rescue. Here we use sucrose gradient fractionation combined with quantitative proteomics to systematically identify proteins associated with collided ribosomes. This approach identified Endothelial differentiation-related factor 1 (EDF1) as a novel protein recruited to collided ribosomes during translational distress. Cryo-electron microscopic analyses of EDF1 and its yeast homolog Mbf1 revealed a conserved 40S ribosomal subunit binding site at the mRNA entry channel near the collision interface. EDF1 recruits the translational repressors GIGYF2 and EIF4E2 to collided ribosomes to initiate a negative-feedback loop that prevents new ribosomes from translating defective mRNAs. Further, EDF1 regulates an immediate-early transcriptional response to ribosomal collisions. Our results uncover mechanisms through which EDF1 coordinates multiple responses of the ribosome-mediated quality control pathway and provide novel insights into the intersection of ribosome-mediated quality control with global transcriptional regulation.

Data availability

Raw mass spectrometry data associated with the following Figures have been deposited in MassIVE repository: Source data for all proteomics-based plots are provided in Source data tables.Figure 1, Figure 1-figure supplement 1: https://doi.org/doi:10.25345/C5T70C(Username: MSV000085423_reviewer | Password: a)Figure 2, Figure 2-figure supplement 1: https://doi.org/doi:10.25345/C5B71D(Username: MSV000085419_reviewer | Password: a)Figure 2-figure supplement 2A: https://doi.org/doi:10.25345/C5Z11X(Username: MSV000085422_reviewer | Password: a)Figure 2H, Figure 2-figure supplement 2F: https://doi.org/doi:10.25345/C5JQ47(Username: MSV000085425_reviewer | Password: a)Figure 5A: https://doi.org/doi:10.25345/C5PH7J(Username: MSV000085424_reviewer | Password: a)Figure 5B, Figure 5-figure supplement 1B-1C: https://doi.org/doi:10.25345/C52Q58(Username: MSV000085421_reviewer | Password: a)Figure 6B-6C, Figure 6-figure supplement 1: https://doi.org/doi:10.25345/C56H6T(Username: MSV000085420_reviewer | Password: a)Raw sequencing data were deposited in the GEO database under the accession number GSE149565. Secure token for reviewers: uzajoeeultgrpsr.The cryo-EM structures reported here have been deposited in the Protein Data Bank under the accession codes 6ZVH (EDF1•ribosome) and 6ZVI (Mbf1•ribosome), and in the Electron Microscopy Data Bank under the accession codes EMD-11456 (EDF1•ribosome) and EMD-11457 (Mbf1•ribosome).

The following data sets were generated

Article and author information

Author details

  1. Niladri K Sinha

    Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9143-495X
  2. Alban Ordureau

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4924-8520
  3. Katharina Best

    Gene Center, Department of Biochemistry, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    No competing interests declared.
  4. James A Saba

    Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3453-8151
  5. Boris Zinshteyn

    Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0103-3501
  6. Elayanambi Sundaramoorthy

    Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1256-9758
  7. Amit Fulzele

    Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  8. Danielle M Garshott

    Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4357-1781
  9. Timo Denk

    Department of Biochemistry, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    No competing interests declared.
  10. Matthias Thoms

    Department of Biochemistry, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    No competing interests declared.
  11. Joao A Paulo

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  12. Wade Harper

    Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    Wade Harper, J.W.H. is a reviewing editor, eLife, a founder and advisory board member for Caraway Therapeutics, Inc, and an advisor for X-Chem Inc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6944-7236
  13. Eric J Bennett

    Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    Competing interests
    Eric J Bennett, E.J.B is an advisor and scientific advisory board member for Plexium.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1201-3314
  14. Roland Beckmann

    Gene Center, Department of Biochemistry, Ludwig Maximilian University of Munich, Munich, Germany
    For correspondence
    beckmann@genzentrum.lmu.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4291-3898
  15. Rachel Green

    Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    ragreen@jhmi.edu
    Competing interests
    Rachel Green, eLife, reviewing editor; advisory board member for Moderna, Inc., FL63, and the Cystic Fibrosis Foundation.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9337-2003

Funding

Howard Hughes Medical Institute

  • Rachel Green

Deutsche Forschungsgemeinschaft (GRK 1721)

  • Roland Beckmann

Deutsche Forschungsgemeinschaft (QBM (Quantitative Biosciences Munich) Graduate School Fellowships)

  • Katharina Best

Deutsche Forschungsgemeinschaft (QBM (Quantitative Biosciences Munich) Graduate School Fellowships)

  • Timo Denk

National Institute of General Medical Sciences (R37GM059425)

  • Rachel Green

National Institute of Neurological Disorders and Stroke (R37NS083524)

  • Wade Harper

National Institute on Aging (AG011085)

  • Wade Harper

National Institute of General Medical Sciences (DP2GM119132)

  • Eric J Bennett

National Institute of General Medical Sciences (5K99GM135450-02)

  • Boris Zinshteyn

Jane Coffin Childs Memorial Fund for Medical Research

  • Niladri K Sinha

National Institute of General Medical Sciences (T32GM007240)

  • Danielle M Garshott

National Science Foundation (DGE-1650112)

  • Danielle M Garshott

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nahum Sonenberg, McGill University, Canada

Version history

  1. Received: May 12, 2020
  2. Accepted: August 2, 2020
  3. Accepted Manuscript published: August 3, 2020 (version 1)
  4. Version of Record published: September 11, 2020 (version 2)

Copyright

© 2020, Sinha et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,206
    views
  • 1,619
    downloads
  • 101
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Niladri K Sinha
  2. Alban Ordureau
  3. Katharina Best
  4. James A Saba
  5. Boris Zinshteyn
  6. Elayanambi Sundaramoorthy
  7. Amit Fulzele
  8. Danielle M Garshott
  9. Timo Denk
  10. Matthias Thoms
  11. Joao A Paulo
  12. Wade Harper
  13. Eric J Bennett
  14. Roland Beckmann
  15. Rachel Green
(2020)
EDF1 coordinates cellular responses to ribosome collisions
eLife 9:e58828.
https://doi.org/10.7554/eLife.58828

Share this article

https://doi.org/10.7554/eLife.58828

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Claudia D Consalvo, Adedeji M Aderounmu ... Brenda L Bass
    Research Article

    Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1’s helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.