Recurrent evolution of high virulence in isolated populations of a DNA virus

  1. Tom Hill  Is a corresponding author
  2. Robert L Unckless
  1. University of Kansas, United States

Abstract

Hosts and viruses are constantly evolving in response to each other: as a host attempts to suppress a virus, the virus attempts to evade and suppress the host's immune system. Here we describe the recurrent evolution of a virulent strain of a DNA virus which infects multiple Drosophila species. Specifically, we identified two distinct viral types that differ 100-fold in viral titer in infected individuals, with similar differences observed in multiple species. Our analysis suggests that one of the viral types appears to have recurrently evolved at least 4 times in the past ~30,000 years, 3X in Arizona and once in another geographically distinct species. This recurrent evolution may be facilitated by an effective mutation rate which increases as each prior mutation increases viral titer and effective population size. The higher titer viral type suppresses the host immune system and an increased virulence compared to the low viral titer type.

Data availability

Sequencing data have been deposited on the NCBI SRA under the study accession: SRP187240Genomes used in this study are available at the following accessions:Drosophila innubila - GCF_004354385.1Drosophila innubila Nudivirus - GCF_004132165.1Drosophila azteca - GCA_005876895.1

The following data sets were generated
    1. Hill T
    2. Unckless RL
    (2020) Drosophila Sky Island data analysis
    Dryad Digital Repository, doi:10.5061/dryad.2fqz612mh.

Article and author information

Author details

  1. Tom Hill

    Molecular Biosciences, University of Kansas, Lawrence, United States
    For correspondence
    tom.hill@ku.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4661-6391
  2. Robert L Unckless

    Department of Molecular Biosciences, University of Kansas, Lawrence, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8586-7137

Funding

KU CMADP (P20 GM103638)

  • Tom Hill
  • Robert L Unckless

K-INBRE (P20 GM103418)

  • Tom Hill

National Institutes of Health (R00 GM114714)

  • Robert L Unckless

National Institutes of Health (R01 AI139154)

  • Robert L Unckless

National Science Foundation (DEB-1737824)

  • Tom Hill
  • Robert L Unckless

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dieter Ebert, University of Basel, Switzerland

Version history

  1. Received: May 14, 2020
  2. Accepted: October 28, 2020
  3. Accepted Manuscript published: October 28, 2020 (version 1)
  4. Version of Record published: November 24, 2020 (version 2)

Copyright

© 2020, Hill & Unckless

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,516
    views
  • 175
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tom Hill
  2. Robert L Unckless
(2020)
Recurrent evolution of high virulence in isolated populations of a DNA virus
eLife 9:e58931.
https://doi.org/10.7554/eLife.58931

Share this article

https://doi.org/10.7554/eLife.58931

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Brian PH Metzger, Yeonwoo Park ... Joseph W Thornton
    Research Article

    A protein’s genetic architecture – the set of causal rules by which its sequence produces its functions – also determines its possible evolutionary trajectories. Prior research has proposed that the genetic architecture of proteins is very complex, with pervasive epistatic interactions that constrain evolution and make function difficult to predict from sequence. Most of this work has analyzed only the direct paths between two proteins of interest – excluding the vast majority of possible genotypes and evolutionary trajectories – and has considered only a single protein function, leaving unaddressed the genetic architecture of functional specificity and its impact on the evolution of new functions. Here, we develop a new method based on ordinal logistic regression to directly characterize the global genetic determinants of multiple protein functions from 20-state combinatorial deep mutational scanning (DMS) experiments. We use it to dissect the genetic architecture and evolution of a transcription factor’s specificity for DNA, using data from a combinatorial DMS of an ancient steroid hormone receptor’s capacity to activate transcription from two biologically relevant DNA elements. We show that the genetic architecture of DNA recognition consists of a dense set of main and pairwise effects that involve virtually every possible amino acid state in the protein-DNA interface, but higher-order epistasis plays only a tiny role. Pairwise interactions enlarge the set of functional sequences and are the primary determinants of specificity for different DNA elements. They also massively expand the number of opportunities for single-residue mutations to switch specificity from one DNA target to another. By bringing variants with different functions close together in sequence space, pairwise epistasis therefore facilitates rather than constrains the evolution of new functions.

    1. Evolutionary Biology
    Raphael Aguillon, Mieka Rinsky ... Oren Levy
    Research Article

    The circadian clock enables anticipation of the day/night cycle in animals ranging from cnidarians to mammals. Circadian rhythms are generated through a transcription-translation feedback loop (TTFL or pacemaker) with CLOCK as a conserved positive factor in animals. However, CLOCK’s functional evolutionary origin and mechanism of action in basal animals are unknown. In the cnidarian Nematostella vectensis, pacemaker gene transcript levels, including NvClk (the Clock ortholog), appear arrhythmic under constant darkness, questioning the role of NvCLK. Utilizing CRISPR/Cas9, we generated a NvClk allele mutant (NvClkΔ), revealing circadian behavior loss under constant dark (DD) or light (LL), while maintaining a 24 hr rhythm under light-dark condition (LD). Transcriptomics analysis revealed distinct rhythmic genes in wild-type (WT) polypsunder LD compared to DD conditions. In LD, NvClkΔ/Δ polyps exhibited comparable numbers of rhythmic genes, but were reduced in DD. Furthermore, under LD, the NvClkΔ/Δ polyps showed alterations in temporal pacemaker gene expression, impacting their potential interactions. Additionally, differential expression of non-rhythmic genes associated with cell division and neuronal differentiation was observed. These findings revealed that a light-responsive pathway can partially compensate for circadian clock disruption, and that the Clock gene has evolved in cnidarians to synchronize rhythmic physiology and behavior with the diel rhythm of the earth’s biosphere.