Distinct subpopulations of mechanosensory chordotonal organ neurons elicit grooming of the fruit fly antennae

  1. Stefanie Hampel  Is a corresponding author
  2. Katharina Eichler
  3. Daichi Yamada
  4. Davi Bock
  5. Azusa Kamikouchi
  6. Andrew M Seeds  Is a corresponding author
  1. University of Puerto Rico Medical Sciences Campus, Puerto Rico
  2. Nagoya University, Japan
  3. University of Vermont, United States

Abstract

Diverse mechanosensory neurons detect different mechanical forces that can impact animal behavior. Yet our understanding of the anatomical and physiological diversity of these neurons and the behaviors that they influence is limited. We previously discovered that grooming of the Drosophila melanogaster antennae is elicited by an antennal mechanosensory chordotonal organ, the Johnston's organ (JO) (Hampel et al., 2015). Here, we describe anatomically and physiologically distinct JO mechanosensory neuron subpopulations that each elicit antennal grooming. We show that the subpopulations project to different, discrete zones in the brain and differ in their responses to mechanical stimulation of the antennae. Although activation of each subpopulation elicits antennal grooming, distinct subpopulations also elicit the additional behaviors of wing flapping or backward locomotion. Our results provide a comprehensive description of the diversity of mechanosensory neurons in the JO, and reveal that distinct JO subpopulations can elicit both common and distinct behavioral responses.

Data availability

Neuron reconstructions will be made available on https://v2.virtualflybrain.org/

The following previously published data sets were used

Article and author information

Author details

  1. Stefanie Hampel

    Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
    For correspondence
    stef.hampel@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8287-549X
  2. Katharina Eichler

    Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7833-8621
  3. Daichi Yamada

    Division of Biological Science, Nagoya University, Nagoya, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Davi Bock

    Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8218-7926
  5. Azusa Kamikouchi

    Graduate School of Science, Nagoya University, Nagoya, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1552-6892
  6. Andrew M Seeds

    Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
    For correspondence
    seeds.andrew@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4932-6496

Funding

Whitehall Foundation (2017-12-69)

  • Andrew M Seeds

National Institute on Minority Health and Health Disparities (MD007600)

  • Andrew M Seeds

National Institute of General Medical Sciences (GM103642)

  • Stefanie Hampel
  • Andrew M Seeds

Puerto Rico Science, Technology and Research Trust (2020-00195)

  • Andrew M Seeds

National Science Foundation (HRD-1736019)

  • Andrew M Seeds

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Version history

  1. Received: June 15, 2020
  2. Accepted: October 25, 2020
  3. Accepted Manuscript published: October 26, 2020 (version 1)
  4. Version of Record published: November 9, 2020 (version 2)

Copyright

© 2020, Hampel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,823
    views
  • 326
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stefanie Hampel
  2. Katharina Eichler
  3. Daichi Yamada
  4. Davi Bock
  5. Azusa Kamikouchi
  6. Andrew M Seeds
(2020)
Distinct subpopulations of mechanosensory chordotonal organ neurons elicit grooming of the fruit fly antennae
eLife 9:e59976.
https://doi.org/10.7554/eLife.59976

Share this article

https://doi.org/10.7554/eLife.59976

Further reading

    1. Neuroscience
    Salima Messaoudi, Ada Allam ... Isabelle Caille
    Research Article

    The fragile X syndrome (FXS) represents the most prevalent form of inherited intellectual disability and is the first monogenic cause of autism spectrum disorder. FXS results from the absence of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein). Neuronal migration is an essential step of brain development allowing displacement of neurons from their germinal niches to their final integration site. The precise role of FMRP in neuronal migration remains largely unexplored. Using live imaging of postnatal rostral migratory stream (RMS) neurons in Fmr1-null mice, we observed that the absence of FMRP leads to delayed neuronal migration and altered trajectory, associated with defects of centrosomal movement. RNA-interference-induced knockdown of Fmr1 shows that these migratory defects are cell-autonomous. Notably, the primary Fmrp mRNA target implicated in these migratory defects is microtubule-associated protein 1B (MAP1B). Knocking down MAP1B expression effectively rescued most of the observed migratory defects. Finally, we elucidate the molecular mechanisms at play by demonstrating that the absence of FMRP induces defects in the cage of microtubules surrounding the nucleus of migrating neurons, which is rescued by MAP1B knockdown. Our findings reveal a novel neurodevelopmental role for FMRP in collaboration with MAP1B, jointly orchestrating neuronal migration by influencing the microtubular cytoskeleton.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.