Single molecule microscopy reveals key physical features of repair foci in living cells

  1. Judith Miné-Hattab  Is a corresponding author
  2. Mathias Heltberg
  3. Marie Villemeur
  4. Chloé Guedj
  5. Thierry Mora
  6. Aleksandra M Walczak
  7. Maxime Dahan
  8. Angela Taddei  Is a corresponding author
  1. Institut Curie, France
  2. Ecole Normale Supérieure, France
  3. École Normale Supérieure, France

Abstract

In response to double strand breaks (DSB), repair proteins accumulate at damaged sites, forming membrane-less sub-compartments or foci. Here we explored the physical nature of these foci, using single molecule microscopy in living cells. Rad52, the functional homolog of BRCA2 in yeast, accumulates at DSB sites and diffuses ~6 times faster within repair foci than the focus itself, exhibiting confined motion. The Rad52 confinement radius coincides with the focus size: foci resulting from 2 DSBs are twice larger in volume that the ones induced by a unique DSB and the Rad52 confinement radius scales accordingly. In contrast, molecules of the single strand binding protein Rfa1 follow anomalous diffusion similar to the focus itself or damaged chromatin. We conclude that while most Rfa1 molecules are bound to the ssDNA, Rad52 molecules are free to explore the entire focus reflecting the existence of a liquid droplet around damaged DNA.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files are available on zenodo using the following link: https://zenodo.org/record/4495116.

The following data sets were generated

Article and author information

Author details

  1. Judith Miné-Hattab

    UMR 3664 - Nuclear Dynamics, Institut Curie, Paris, France
    For correspondence
    judith.Mine@curie.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9986-4092
  2. Mathias Heltberg

    UMR 3664 - Nuclear Dynamics, Institut Curie, paris, France
    Competing interests
    No competing interests declared.
  3. Marie Villemeur

    UMR3664 - Nuclear Dynamics, Institut Curie, Paris, France
    Competing interests
    No competing interests declared.
  4. Chloé Guedj

    UMR3664 - Nuclear Dynamics, Institut Curie, Paris, France
    Competing interests
    No competing interests declared.
  5. Thierry Mora

    Laboratoire de physique, Ecole Normale Supérieure, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5456-9361
  6. Aleksandra M Walczak

    Laboratoire de Physique Theorique, École Normale Supérieure, Paris, France
    Competing interests
    Aleksandra M Walczak, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2686-5702
  7. Maxime Dahan

    Division of Genetics, Genomics & Development, Department of Molecular and Cell Biology, Institut Curie, Paris, France
    Competing interests
    No competing interests declared.
  8. Angela Taddei

    UMR3664, Institut Curie, Paris, France
    For correspondence
    angela.taddei@curie.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3217-0739

Funding

Agence Nationale de la Recherche (ANR-11-LABEX-0044 DEEP)

  • Angela Taddei

Agence Nationale de la Recherche (ANR-10-IDEX-0001-02 PSL)

  • Angela Taddei

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Irene E Chiolo, University of Southern California, United States

Version history

  1. Received: June 30, 2020
  2. Accepted: January 26, 2021
  3. Accepted Manuscript published: February 5, 2021 (version 1)
  4. Version of Record published: March 1, 2021 (version 2)
  5. Version of Record updated: March 5, 2021 (version 3)

Copyright

© 2021, Miné-Hattab et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,408
    views
  • 505
    downloads
  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Judith Miné-Hattab
  2. Mathias Heltberg
  3. Marie Villemeur
  4. Chloé Guedj
  5. Thierry Mora
  6. Aleksandra M Walczak
  7. Maxime Dahan
  8. Angela Taddei
(2021)
Single molecule microscopy reveals key physical features of repair foci in living cells
eLife 10:e60577.
https://doi.org/10.7554/eLife.60577

Share this article

https://doi.org/10.7554/eLife.60577

Further reading

    1. Developmental Biology
    2. Physics of Living Systems
    Raphaël Clément
    Insight

    Geometric criteria can be used to assess whether cell intercalation is active or passive during the convergent extension of tissue.

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Taegon Chung, Iksoo Chang, Sangyeol Kim
    Research Article

    Locomotion is a fundamental behavior of Caenorhabditis elegans (C. elegans). Previous works on kinetic simulations of animals helped researchers understand the physical mechanisms of locomotion and the muscle-controlling principles of neuronal circuits as an actuator part. It has yet to be understood how C. elegans utilizes the frictional forces caused by the tension of its muscles to perform sequenced locomotive behaviors. Here, we present a two-dimensional rigid body chain model for the locomotion of C. elegans by developing Newtonian equations of motion for each body segment of C. elegans. Having accounted for friction-coefficients of the surrounding environment, elastic constants of C. elegans, and its kymogram from experiments, our kinetic model (ElegansBot) reproduced various locomotion of C. elegans such as, but not limited to, forward-backward-(omega turn)-forward locomotion constituting escaping behavior and delta-turn navigation. Additionally, ElegansBot precisely quantified the forces acting on each body segment of C. elegans to allow investigation of the force distribution. This model will facilitate our understanding of the detailed mechanism of various locomotive behaviors at any given friction-coefficients of the surrounding environment. Furthermore, as the model ensures the performance of realistic behavior, it can be used to research actuator-controller interaction between muscles and neuronal circuits.