Unsupervised changes in core object recognition behavior are predicted by neural plasticity in inferior temporal cortex

  1. Xiaoxuan Jia  Is a corresponding author
  2. Ha Hong
  3. James J DiCarlo
  1. Massachusetts Institute of Technology, United States

Abstract

Temporal continuity of object identity is a feature of natural visual input, and is potentially exploited -- in an unsupervised manner -- by the ventral visual stream to build the neural representation in inferior temporal (IT) cortex. Here we investigated whether plasticity of individual IT neurons underlies human core-object-recognition behavioral changes induced with unsupervised visual experience. We built a single-neuron plasticity model combined with a previously established IT population-to-recognition-behavior linking model to predict human learning effects. We found that our model, after constrained by neurophysiological data, largely predicted the mean direction, magnitude and time course of human performance changes. We also found a previously unreported dependency of the observed human performance change on the initial task difficulty. This result adds support to the hypothesis that tolerant core object recognition in human and non-human primates is instructed -- at least in part -- by naturally occurring unsupervised temporal contiguity experience.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files, in the most useful format (https://github.com/jiaxx/temporal_learning_paper). Datasets from previous studies (IT population dataset (Majaj et al., 2015) and IT plasticity data (Li & DiCarlo, 2010)) are also compiled in the most useful format and saved in the same github location. Original datasets for previous studies can be obtained by directly contacting the corresponding authors of those studies ((Majaj et al., 2015) and (Li & DiCarlo, 2010)). Source data files for figure 2,4,5 and 6 are provided in the github repo as well.

Article and author information

Author details

  1. Xiaoxuan Jia

    Dept. of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    jxiaoxuan@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5484-9331
  2. Ha Hong

    Dept. of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. James J DiCarlo

    McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (2-RO1-EY014970-06)

  • James J DiCarlo

Simons Foundation (SCGB [325500])

  • James J DiCarlo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Thomas Serre, Brown University, United States

Ethics

Human subjects: All human experiments were done in accordance with the MIT Committee on the Use of Humans as Experimental Subjects (COUHES; the protocol number is 0812003043). We used Amazon Mechanical Turk (MTurk), an online platform where subjects can participate in non-profit psychophysical experiments for payment based on the duration of the task. In the description of each task, it is clearly stated that participation is voluntary and subjects may quit at any time. Subjects can preview each task before agreeing to participate. Subjects will also be informed that anonymity is assured and the researchers will not receive any personal information. MTurk requires subjects to read task descriptions before agreeing to participate. If subjects successfully complete the task, they anonymously receive payment through the MTurk interface.

Version history

  1. Received: July 8, 2020
  2. Accepted: June 10, 2021
  3. Accepted Manuscript published: June 11, 2021 (version 1)
  4. Accepted Manuscript updated: June 17, 2021 (version 2)
  5. Version of Record published: July 30, 2021 (version 3)

Copyright

© 2021, Jia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,665
    views
  • 266
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaoxuan Jia
  2. Ha Hong
  3. James J DiCarlo
(2021)
Unsupervised changes in core object recognition behavior are predicted by neural plasticity in inferior temporal cortex
eLife 10:e60830.
https://doi.org/10.7554/eLife.60830

Share this article

https://doi.org/10.7554/eLife.60830

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Neuroscience
    Kenta Abe, Yuki Kambe ... Tatsuo Sato
    Research Article

    Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.