Two opposite voltage-dependent currents control the unusual early development pattern of embryonic Renshaw cell electrical activity

  1. Juliette Boeri
  2. Claude Meunier
  3. Hervé Le Corronc
  4. Pascal Branchereau
  5. Yulia Timofeeva
  6. François-Xavier Lejeune
  7. Christine Mouffle
  8. Hervé Arulkandarajah
  9. Jean Marie Mangin
  10. Pascal Legendre  Is a corresponding author
  11. Antonny Czarnecki  Is a corresponding author
  1. Sorbonne University, France
  2. Université de Paris, France
  3. Université de Bordeaux, CNRS, France
  4. UCL Queen Square Institute of Neurology, University College London, United Kingdom
  5. Institut du Cerveau et de la Moelle Épinière, France

Abstract

Renshaw cells (V1R) are excitable as soon as they reach their final location next to the spinal motoneurons and are functionally heterogeneous. Using multiple experimental approaches, in combination with biophysical modeling and dynamical systems theory, we analyzed, for the first time, the mechanisms underlying the electrophysiological properties of V1R during early embryonic development of the mouse spinal cord locomotor networks (E11.5-E16.5). We found that these interneurons are subdivided into several functional clusters from E11.5 and then display an unexpected transitory involution process during which they lose their ability to sustain tonic firing. We demonstrated that the essential factor controlling the diversity of the discharge pattern of embryonic V1R is the ratio of a persistent sodium conductance to a delayed rectifier potassium conductance. Taken together, our results reveal how a simple mechanism, based on the synergy of two voltage-dependent conductances that are ubiquitous in neurons, can produce functional diversity in embryonic V1R and control their early developmental trajectory.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 3 (Source data files for cluster analysis).

Article and author information

Author details

  1. Juliette Boeri

    INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Claude Meunier

    Centre de Neurosciences Intégratives et Cognition, CNRS UMR 8002, Institut Neurosciences et Cognition, Université de Paris, PARIS, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Hervé Le Corronc

    INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Pascal Branchereau

    Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA) - UMR 5287, Université de Bordeaux, CNRS, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3972-8229
  5. Yulia Timofeeva

    Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, LONDON, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. François-Xavier Lejeune

    U1127 INSERM, Institut du Cerveau et de la Moelle Épinière, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Christine Mouffle

    INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Hervé Arulkandarajah

    INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Jean Marie Mangin

    INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Pascal Legendre

    INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne University, Paris, France
    For correspondence
    pascal.legendre@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5086-4515
  11. Antonny Czarnecki

    INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne University, Paris, France
    For correspondence
    antonny.czarnecki@u-bordeaux.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5104-034X

Funding

Fondation pour la recherche medicale (DEQ20160334891)

  • Pascal Legendre

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jeffrey C Smith, National Institute of Neurological Disorders and Stroke, United States

Ethics

Animal experimentation: Experiments were performed in accordance with European Community guiding principles on the care and use of animals (86/609/CEE, CE Off J no. L358, 18 December 1986), French decree no. 97/748 of October 19, 1987 (Journal Officiel République Française, 20 October 1987, pp. 12245-12248). All procedures were carried out in accordance with the local ethics committee of local Universities and recommendations from the CNRS. pregnant mice were anesthetized by intramuscular injection of a mix of ketamine and xylazine and sacrificed using a lethal dose of CO2 after embryos of either sex were removed. Every effort was made to minimize suffering.

Version history

  1. Received: August 31, 2020
  2. Accepted: April 24, 2021
  3. Accepted Manuscript published: April 26, 2021 (version 1)
  4. Accepted Manuscript updated: April 29, 2021 (version 2)
  5. Version of Record published: May 21, 2021 (version 3)

Copyright

© 2021, Boeri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 713
    views
  • 133
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juliette Boeri
  2. Claude Meunier
  3. Hervé Le Corronc
  4. Pascal Branchereau
  5. Yulia Timofeeva
  6. François-Xavier Lejeune
  7. Christine Mouffle
  8. Hervé Arulkandarajah
  9. Jean Marie Mangin
  10. Pascal Legendre
  11. Antonny Czarnecki
(2021)
Two opposite voltage-dependent currents control the unusual early development pattern of embryonic Renshaw cell electrical activity
eLife 10:e62639.
https://doi.org/10.7554/eLife.62639

Share this article

https://doi.org/10.7554/eLife.62639

Further reading

    1. Cell Biology
    2. Neuroscience
    Mariana I Tsap, Andriy S Yatsenko ... Halyna R Shcherbata
    Research Article Updated

    Mutations in Drosophila Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.

    1. Neuroscience
    Mohsen Sadeghi, Reza Sharif Razavian ... Dagmar Sternad
    Research Article

    Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal’s control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject’s control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.