Competition between parallel sensorimotor learning systems

  1. Scott T Albert  Is a corresponding author
  2. Jihoon Jang
  3. Shanaathanan Modchalingam
  4. Marius 't Hart
  5. Denise Henriques
  6. Gonzalo Lerner
  7. Valeria Della-Maggiore
  8. Adrian M Haith
  9. John W Krakauer
  10. Reza Shadmehr
  1. Johns Hopkins School of Medicine, United States
  2. York University, Canada
  3. University of Buenos Aires, Argentina
  4. Johns Hopkins University School of Medicine, United States

Abstract

Sensorimotor learning is supported by at least two parallel systems: a strategic process that benefits from explicit knowledge, and an implicit process that adapts subconsciously. How do these systems interact? Does one system's contributions suppress the other, or do they operate independently? Here we illustrate that during reaching, implicit and explicit systems both learn from visual target errors. This shared error leads to competition such that an increase in the explicit system's response siphons away resources that are needed for implicit adaptation, thus reducing its learning. As a result, steady-state implicit learning can vary across experimental conditions, due to changes in strategy. Furthermore, strategies can mask changes in implicit learning properties, such as its error sensitivity. These ideas, however, become more complex in conditions where subjects adapt using multiple visual landmarks, a situation which introduces learning from sensory prediction errors in addition to target errors. These two types of implicit errors can oppose each other, leading to another type of competition. Thus, during sensorimotor adaptation, implicit and explicit learning systems compete for a common resource: error.

Data availability

Source data files generated or analyzed during this study, as well as the associated analysis code, are included as supplements to Figures 1-10, as well as their associated Figure Supplements, and have also been deposited in OSF under accession code MZS6A

The following data sets were generated

Article and author information

Author details

  1. Scott T Albert

    Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, United States
    For correspondence
    scottalbert1@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9140-1077
  2. Jihoon Jang

    Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Shanaathanan Modchalingam

    Department of Kinesiology and Health Science, York University, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Marius 't Hart

    Department of Kinesiology and Health Science, York University, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Denise Henriques

    Department of Kinesiology and Health Science, York University, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Gonzalo Lerner

    Deparamento de Fisiología y Biofísia, University of Buenos Aires, Buenos Aires, Argentina
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7791-9408
  7. Valeria Della-Maggiore

    Deparamento de Fisiología y Biofísia, University of Buenos Aires, Buenos Aires, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  8. Adrian M Haith

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5658-8654
  9. John W Krakauer

    Department of Neurology, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4316-1846
  10. Reza Shadmehr

    Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7686-2569

Funding

National Institute of Neurological Disorders and Stroke (F32NS095706)

  • Scott T Albert

National Science Foundation (CNS-1714623)

  • Reza Shadmehr

National Institute of Neurological Disorders and Stroke (R01NS078311)

  • Reza Shadmehr

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kunlin Wei, Peking University, China

Ethics

Human subjects: Informed consent was obtained from all study participants. All human subjects work was approved by the Johns Hopkins School of Medicine Institutional Review Board (protocol number NA_00037510) or the York Human Participants Review Sub-committee.

Version history

  1. Received: December 1, 2020
  2. Preprint posted: December 2, 2020 (view preprint)
  3. Accepted: February 11, 2022
  4. Accepted Manuscript published: February 28, 2022 (version 1)
  5. Version of Record published: May 4, 2022 (version 2)

Copyright

© 2022, Albert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,440
    views
  • 463
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Scott T Albert
  2. Jihoon Jang
  3. Shanaathanan Modchalingam
  4. Marius 't Hart
  5. Denise Henriques
  6. Gonzalo Lerner
  7. Valeria Della-Maggiore
  8. Adrian M Haith
  9. John W Krakauer
  10. Reza Shadmehr
(2022)
Competition between parallel sensorimotor learning systems
eLife 11:e65361.
https://doi.org/10.7554/eLife.65361

Share this article

https://doi.org/10.7554/eLife.65361

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Neuroscience
    Kenta Abe, Yuki Kambe ... Tatsuo Sato
    Research Article

    Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.