Structural basis of Stu2 recruitment to yeast kinetochores

  1. Jacob A Zahm
  2. Michael G Stewart
  3. Joseph S Carrier
  4. Stephen C Harrison  Is a corresponding author
  5. Matthew P Miller  Is a corresponding author
  1. Howard Hughes Medical Institute, Harvard Medical School, United States
  2. University of Utah School of Medicine, United States

Abstract

Chromosome segregation during cell division requires engagement of kinetochores of sister chromatids with microtubules emanating from opposite poles. As the corresponding microtubules shorten, these 'bioriented' sister kinetochores experience tension-dependent stabilization of microtubule attachments. The yeast XMAP215 family member and microtubule polymerase, Stu2, associates with kinetochores and contributes to tension-dependent stabilization in vitro. We show here that a C-terminal segment of Stu2 binds the four-way junction of the Ndc80 complex (Ndc80c) and that residues conserved both in yeast Stu2 orthologs and in their metazoan counterparts make specific contacts with Ndc80 and Spc24. Mutations that perturb this interaction prevent association of Stu2 with kinetochores, impair cell viability, produce biorientation defects, and delay cell cycle progression. Ectopic tethering of the mutant Stu2 species to the Ndc80c junction restores wild-type function in vivo. These findings show that the role of Stu2 in tension-sensing depends on its association with kinetochores by binding with Ndc80c.

Data availability

Diffraction data have been deposited in PDB under the accession code: 7KDF

The following data sets were generated

Article and author information

Author details

  1. Jacob A Zahm

    1Department of Biological Chemistry and Molecular Pharmacology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Michael G Stewart

    Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joseph S Carrier

    Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Stephen C Harrison

    1Department of Biological Chemistry and Molecular Pharmacology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    For correspondence
    harrison@crystal.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7215-9393
  5. Matthew P Miller

    Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    For correspondence
    matthew.miller@biochem.utah.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2012-7546

Funding

Damon Runyon Cancer Research Foundation (Dale F. Frey Award for Breakthrough Scientists,29-18)

  • Matthew P Miller

Howard Hughes Medical Institute

  • Stephen C Harrison

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jennifer G. DeLuca, Colorado State University, United States

Version history

  1. Received: December 2, 2020
  2. Accepted: February 15, 2021
  3. Accepted Manuscript published: February 16, 2021 (version 1)
  4. Version of Record published: February 26, 2021 (version 2)

Copyright

© 2021, Zahm et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,963
    views
  • 240
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jacob A Zahm
  2. Michael G Stewart
  3. Joseph S Carrier
  4. Stephen C Harrison
  5. Matthew P Miller
(2021)
Structural basis of Stu2 recruitment to yeast kinetochores
eLife 10:e65389.
https://doi.org/10.7554/eLife.65389

Share this article

https://doi.org/10.7554/eLife.65389

Further reading

    1. Cell Biology
    Gang Liu, Yunxuan Hou ... Xiumei Jiang
    Research Article

    Erythropoiesis and megakaryopoiesis are stringently regulated by signaling pathways. However, the precise molecular mechanisms through which signaling pathways regulate key transcription factors controlling erythropoiesis and megakaryopoiesis remain partially understood. Herein, we identified heat shock cognate B (HSCB), which is well known for its iron–sulfur cluster delivery function, as an indispensable protein for friend of GATA 1 (FOG1) nuclear translocation during erythropoiesis of K562 human erythroleukemia cells and cord-blood-derived human CD34+CD90+hematopoietic stem cells (HSCs), as well as during megakaryopoiesis of the CD34+CD90+HSCs. Mechanistically, HSCB could be phosphorylated by phosphoinositol-3-kinase (PI3K) to bind with and mediate the proteasomal degradation of transforming acidic coiled-coil containing protein 3 (TACC3), which otherwise detained FOG1 in the cytoplasm, thereby facilitating FOG1 nuclear translocation. Given that PI3K is activated during both erythropoiesis and megakaryopoiesis, and that FOG1 is a key transcription factor for these processes, our findings elucidate an important, previously unrecognized iron–sulfur cluster delivery independent function of HSCB in erythropoiesis and megakaryopoiesis.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.