Population receptive fields in non-human primates from whole-brain fMRI and large-scale neurophysiology in visual cortex

  1. Peter Christiaan Klink  Is a corresponding author
  2. Xing Chen
  3. Vim Vanduffel
  4. Pieter Roelfsema
  1. Netherlands Institute for Neuroscience, Netherlands
  2. KU Leuven Medical School, Belgium

Abstract

Population receptive field (pRF) modeling is a popular fMRI method to map the retinotopic organization of the human brain. While fMRI-based pRF-maps are qualitatively similar to invasively recorded single-cell receptive fields in animals, it remains unclear what neuronal signal they represent. We addressed this question in awake non-human primates comparing whole-brain fMRI and large-scale neurophysiological recordings in areas V1 and V4 of the visual cortex. We examined the fits of several pRF-models based on the fMRI BOLD-signal, multi-unit spiking activity (MUA) and local field potential (LFP) power in different frequency bands. We found that pRFs derived from BOLD-fMRI were most similar to MUA-pRFs in V1 and V4, while pRFs based on LFP gamma power also gave a good approximation. FMRI-based pRFs thus reliably reflect neuronal receptive field properties in the primate brain. In addition to our results in V1 and V4, the whole-brain fMRI measurements revealed retinotopic tuning in many other cortical and subcortical areas with a consistent increase in pRF-size with increasing eccentricity, as well as a retinotopically specific deactivation of default-mode network nodes similar to previous observations in humans.

Data availability

- All data and code are available on GIN: https://doi.org/10.12751/g-node.p8ypgv- Unthresholded fMRI model fitting results are available on Neurovault: https://identifiers.org/neurovault.collection:8082

Article and author information

Author details

  1. Peter Christiaan Klink

    Vision and Cognition, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    For correspondence
    c.klink@nin.knaw.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6784-7842
  2. Xing Chen

    Vision and Cognition, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3589-1750
  3. Vim Vanduffel

    KU Leuven Medical School, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Pieter Roelfsema

    Vision and Cognition, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1625-0034

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (VENI 451.13.023)

  • Peter Christiaan Klink

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (STW-Perspectief P15-42 NESTOR"")

  • Xing Chen
  • Pieter Roelfsema

FP7 Ideas: European Research Council (ERC 339490 Cortic_al_gorithms"")

  • Pieter Roelfsema

Human Brain Project ((agreements 720270 and 785907,Human Brain Project SGA1 and SGA2"")

  • Vim Vanduffel
  • Pieter Roelfsema

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Crossover Program 17619 INTENSE"")

  • Peter Christiaan Klink
  • Pieter Roelfsema

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kristine Krug, University of Oxford, United Kingdom

Ethics

Animal experimentation: Animal care and experimental procedures were in accordance with the ILAR's Guide for the Care and Use of Laboratory Animals, the European legislation (Directive 2010/63/EU) and approved by the institutional animal care and use committee of the Royal Netherlands Academy of Arts and Sciences and the Central Authority for Scientific Procedures on Animals (CCD) in the Netherlands (License numbers AVD8010020173789 and AVD8010020171046).

Version history

  1. Preprint posted: September 8, 2020 (view preprint)
  2. Received: February 7, 2021
  3. Accepted: October 24, 2021
  4. Accepted Manuscript published: November 3, 2021 (version 1)
  5. Accepted Manuscript updated: November 4, 2021 (version 2)
  6. Version of Record published: December 3, 2021 (version 3)

Copyright

© 2021, Klink et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,511
    views
  • 347
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peter Christiaan Klink
  2. Xing Chen
  3. Vim Vanduffel
  4. Pieter Roelfsema
(2021)
Population receptive fields in non-human primates from whole-brain fMRI and large-scale neurophysiology in visual cortex
eLife 10:e67304.
https://doi.org/10.7554/eLife.67304

Share this article

https://doi.org/10.7554/eLife.67304

Further reading

    1. Cell Biology
    2. Neuroscience
    Mariana I Tsap, Andriy S Yatsenko ... Halyna R Shcherbata
    Research Article Updated

    Mutations in Drosophila Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.

    1. Neuroscience
    Mohsen Sadeghi, Reza Sharif Razavian ... Dagmar Sternad
    Research Article

    Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal’s control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject’s control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.