Coordination between nucleotide excision repair and specialized polymerase DnaE2 action enables DNA damage survival in non-replicating bacteria

  1. Asha Mary Joseph
  2. Saheli Daw
  3. Ismath Sadhir
  4. Anjana Badrinarayanan  Is a corresponding author
  1. National Centre for Biological Sciences, India

Abstract

Translesion synthesis (TLS) is a highly conserved mutagenic DNA lesion tolerance pathway, which employs specialized, low-fidelity DNA polymerases to synthesize across lesions. Current models suggest that activity of these polymerases is predominantly associated with ongoing replication, functioning either at or behind the replication fork. Here we provide evidence for DNA damage-dependent function of a specialized polymerase, DnaE2, in replication-independent conditions. We develop an assay to follow lesion repair in non-replicating Caulobacter and observe that components of the replication machinery localize on DNA in response to damage. These localizations persist in the absence of DnaE2 or if catalytic activity of this polymerase is mutated. Single-stranded DNA gaps for SSB binding and low-fidelity polymerase-mediated synthesis are generated by nucleotide excision repair, as replisome components fail to localize in the absence of NER. This mechanism of gap-filling facilitates cell cycle restoration when cells are released into replication-permissive conditions. Thus, such cross-talk (between activity of NER and specialized polymerases in subsequent gap-filling) helps preserve genome integrity and enhances survival in a replication-independent manner.

Data availability

Data analysed during this study are included in the manuscript. Numerical data files (source data files) have been provided for Figure 1_figure supplement1, Figure 2-5 and corresponding figure supplements.

Article and author information

Author details

  1. Asha Mary Joseph

    Biochemistry, microbiology, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0465-9799
  2. Saheli Daw

    Biochemistry, microbiology, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Ismath Sadhir

    Biochemistry, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Anjana Badrinarayanan

    Biochemistry, microbiology, National Centre for Biological Sciences, Bangalore, India
    For correspondence
    anjana@ncbs.res.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5520-2134

Funding

Human Frontier of Sciences Programme (00051/ 2017-C)

  • Anjana Badrinarayanan

Department of Atomic Energy, Government of India (12-R&D-TFR-5.04-0800)

  • Anjana Badrinarayanan

Department of Science and Technology, Ministry of Science and Technology, India (PDF/2018/001164)

  • Asha Mary Joseph

Department of Biotechnology, Ministry of Science and Technology, India (IYBA)

  • Anjana Badrinarayanan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Maria Spies, University of Iowa, United States

Version history

  1. Received: February 15, 2021
  2. Accepted: April 14, 2021
  3. Accepted Manuscript published: April 15, 2021 (version 1)
  4. Version of Record published: May 6, 2021 (version 2)

Copyright

© 2021, Joseph et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,412
    views
  • 257
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Asha Mary Joseph
  2. Saheli Daw
  3. Ismath Sadhir
  4. Anjana Badrinarayanan
(2021)
Coordination between nucleotide excision repair and specialized polymerase DnaE2 action enables DNA damage survival in non-replicating bacteria
eLife 10:e67552.
https://doi.org/10.7554/eLife.67552

Share this article

https://doi.org/10.7554/eLife.67552

Further reading

    1. Cell Biology
    2. Developmental Biology
    Corey D Holman, Alexander P Sakers ... Patrick Seale
    Research Article

    The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process in mice. We found that aging increases the expression of Cd9 and other fibro-inflammatory genes in fibroblastic ASPCs and blocks their differentiation into beige adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for beige differentiation in vitro, suggesting that environmental factors suppress adipogenesis in vivo. Examination of adipocytes by single nucleus RNA-sequencing identified compositional and transcriptional differences in adipocyte populations with aging and cold exposure. Notably, cold exposure induced an adipocyte population expressing high levels of de novo lipogenesis (DNL) genes, and this response was severely blunted in aged animals. We further identified Npr3, which encodes the natriuretic peptide clearance receptor, as a marker gene for a subset of white adipocytes and an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige adipogenesis and dysregulates adipocyte responses to cold exposure and provides a resource for identifying cold and aging-regulated pathways in adipose tissue.

    1. Cell Biology
    Tongtong Ma, Ruimin Ren ... Heng Wang
    Research Article

    Current studies on cultured meat mainly focus on the muscle tissue reconstruction in vitro, but lack the formation of intramuscular fat, which is a crucial factor in determining taste, texture, and nutritional contents. Therefore, incorporating fat into cultured meat is of superior value. In this study, we employed the myogenic/lipogenic transdifferentiation of chicken fibroblasts in 3D to produce muscle mass and deposit fat into the same cells without the co-culture or mixture of different cells or fat substances. The immortalized chicken embryonic fibroblasts were implanted into the hydrogel scaffold, and the cell proliferation and myogenic transdifferentiation were conducted in 3D to produce the whole-cut meat mimics. Compared to 2D, cells grown in 3D matrix showed elevated myogenesis and collagen production. We further induced fat deposition in the transdifferentiated muscle cells and the triglyceride content could be manipulated to match and exceed the levels of chicken meat. The gene expression analysis indicated that both lineage-specific and multifunctional signalings could contribute to the generation of muscle/fat matrix. Overall, we were able to precisely modulate muscle, fat, and extracellular matrix contents according to balanced or specialized meat preferences. These findings provide new avenues for customized cultured meat production with desired intramuscular fat contents that can be tailored to meet the diverse demands of consumers.