De-novo macrocyclic peptides dissect energy coupling of a heterodimeric ABC transporter by multimode allosteric inhibition

  1. Erich Stefan
  2. Richard Obexer
  3. Susanne Hofmann
  4. Khanh Vu Huu
  5. Yichao Huang
  6. Nina Morgner
  7. Hiroaki Suga  Is a corresponding author
  8. Robert Tampé  Is a corresponding author
  1. Goethe University Frankfurt, Germany
  2. The University of Tokyo, Japan

Abstract

ATP-binding cassette (ABC) transporters constitute the largest family of primary active transporters involved in a multitude of physiological processes and human diseases. Despite considerable efforts, it remains unclear how ABC transporters harness the chemical energy of ATP to drive substrate transport across cell membranes. Here, by random nonstandard peptide integrated discovery (RaPID), we leveraged combinatorial macrocyclic peptides that target a heterodimeric ABC transport complex and explore fundamental principles of the substrate translocation cycle. High-affinity peptidic macrocycles bind conformationally selective and display potent multimode inhibitory effects. The macrocycles block the transporter either before or after unidirectional substrate export along a single conformational switch induced by ATP binding. Our study reveals mechanistic principles of ATP binding, conformational switching, and energy transduction for substrate transport of ABC export systems. We highlight the potential of de novo macrocycles as effective inhibitors for membrane proteins implicated in multidrug resistance, providing avenues for the next-generation of pharmaceuticals.

Data availability

All data denerated or analyzed during this study are included in the manuscript and support files. A source data file has been provided for Figure 1C (Sequencing Data), Figure 2-6, Figure 2-supplement figure 1,and Figure 5-supplement figure 1.

Article and author information

Author details

  1. Erich Stefan

    Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Richard Obexer

    Department of Chemistry, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Susanne Hofmann

    Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Khanh Vu Huu

    3Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Yichao Huang

    Department of Chemistry, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Nina Morgner

    Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1872-490X
  7. Hiroaki Suga

    Department of Chemistry, The University of Tokyo, Tokyo, Japan
    For correspondence
    hsuga@chem.su-tokyo.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
  8. Robert Tampé

    Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
    For correspondence
    tampe@em.uni-frankfurt.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0403-2160

Funding

Deutsche Forschungsgemeinschaft (TA 157/12-1)

  • Robert Tampé

Deutsche Forschungsgemeinschaft (CRC 807/P16)

  • Robert Tampé

Deutsche Forschungsgemeinschaft (CRC 807/24)

  • Nina Morgner

European Research Council (798121)

  • Robert Tampé

JSPS Grants-in-Aid for Research Fellowship (P15333)

  • Richard Obexer

Japan Society for the Promotion of Science (JP20H05618)

  • Hiroaki Suga

Japan Society for the Promotion of Science (JP20am0101090)

  • Hiroaki Suga

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David Drew, Stockholm University, Sweden

Version history

  1. Received: February 21, 2021
  2. Accepted: April 29, 2021
  3. Accepted Manuscript published: April 30, 2021 (version 1)
  4. Version of Record published: May 12, 2021 (version 2)

Copyright

© 2021, Stefan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,136
    views
  • 313
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erich Stefan
  2. Richard Obexer
  3. Susanne Hofmann
  4. Khanh Vu Huu
  5. Yichao Huang
  6. Nina Morgner
  7. Hiroaki Suga
  8. Robert Tampé
(2021)
De-novo macrocyclic peptides dissect energy coupling of a heterodimeric ABC transporter by multimode allosteric inhibition
eLife 10:e67732.
https://doi.org/10.7554/eLife.67732

Share this article

https://doi.org/10.7554/eLife.67732

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Claudia D Consalvo, Adedeji M Aderounmu ... Brenda L Bass
    Research Article

    Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1’s helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.