Sepsis leads to lasting changes in phenotype and function of memory CD8 T cells

  1. Isaac J jensen
  2. Xiang Li
  3. Patrick W McGonagill
  4. Qiang Shan
  5. Micaela G Fosdick
  6. Mikaela M Tremblay
  7. Jon CD Houtman
  8. Hai-Hui Xue
  9. Thomas S Griffith
  10. Weiqun Peng
  11. Vladimir P Badovinac  Is a corresponding author
  1. University of Iowa, United States
  2. George Washington University, United States
  3. Hackensack University Medical Center, United States
  4. University of Minnesota, United States

Abstract

The global health burden due to sepsis and the associated cytokine storm is substantial. While early intervention has improved survival during the cytokine storm, those that survive can enter a state of chronic immunoparalysis defined by transient lymphopenia and functional deficits of surviving cells. Memory CD8 T cells provide rapid cytolysis and cytokine production following re-encounter with their cognate antigen to promote long-term immunity, and CD8 T cell impairment due to sepsis can pre-dispose individuals to re-infection. While the acute influence of sepsis on memory CD8 T cells has been characterized, if and to what extent pre-existing memory CD8 T cells recover remains unknown. Here, we observed that central memory CD8 T cells (TCM) from septic patients proliferate more than those from healthy individuals. Utilizing LCMV immune mice and a CLP model to induce sepsis, we demonstrated that TCM proliferation is associated with numerical recovery of pathogen-specific memory CD8 T cells following sepsis-induced lymphopenia. This increased proliferation leads to changes in composition of memory CD8 T cell compartment and altered tissue localization. Further, memory CD8 T cells from sepsis survivors have an altered transcriptional profile and chromatin accessibility indicating long-lasting T cell intrinsic changes. The sepsis-induced changes in the composition of the memory CD8 T cell pool and transcriptional landscape culminated in altered T cell function and reduced capacity to control L. monocytogenes infection. Thus, sepsis leads to long-term alterations in memory CD8 T cell phenotype, protective function and localization potentially changing host capacity to respond to re-infection.

Data availability

Sequencing data are deposited in GEO under accession code GSE174358source data for all figures are provided in associated excel files.

The following data sets were generated

Article and author information

Author details

  1. Isaac J jensen

    Pathology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3107-3961
  2. Xiang Li

    George Washington University, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Patrick W McGonagill

    Pathology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Qiang Shan

    Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Micaela G Fosdick

    Pathology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2427-532X
  6. Mikaela M Tremblay

    Pathology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jon CD Houtman

    Microbiology and Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Hai-Hui Xue

    Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9163-7669
  9. Thomas S Griffith

    Microbiology, Immunology, and Cancer Biology PhD Program, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7205-9859
  10. Weiqun Peng

    George Washington University, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Vladimir P Badovinac

    Pathology, University of Iowa, Iowa City, United States
    For correspondence
    vladimir-badovinac@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3180-2439

Funding

National Institutes of Health (R01AI114543)

  • Vladimir P Badovinac

National Institutes of Health (R21AI157121)

  • Jon CD Houtman

National Institutes of Health (T32AI007511)

  • Isaac J jensen

National Institutes of Health (T32AI007485)

  • Isaac J jensen

Veterans Health Administration (I0BX001324)

  • Thomas S Griffith

National Cancer Institute (P30CA086862)

  • Jon CD Houtman

National Institutes of Health (R21AI147064)

  • Vladimir P Badovinac

National Institutes of Health (R21AI151183)

  • Vladimir P Badovinac

National Institutes of Health (R01GM115462)

  • Thomas S Griffith

National Institutes of Health (R35GM134880)

  • Vladimir P Badovinac

National Institutes of Health (R35GM140881)

  • Thomas S Griffith

National Institutes of Health (R01AI112579)

  • Hai-Hui Xue

National Institutes of Health (R01AI121080)

  • Hai-Hui Xue
  • Weiqun Peng

National Institutes of Health (R01AI139874)

  • Hai-Hui Xue
  • Weiqun Peng

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gabrielle T Belz, The University of Queensland, Australia

Ethics

Animal experimentation: Experimental procedures using mice were approved by University of Iowa Animal Care and Use Committee under ACURF protocol #6121915 and #9101915. The experiments performed followed Office of Laboratory Animal Welfare guidelines and PHS Policy on Humane Care and Use of Laboratory Animals. Cervical dislocation was used as the euthanasia method of all experimental mice. Inbred C57Bl/6 (B6, Thy1.2) and TCR-transgenic (TCR-Tg) P14 (Thy1.1) mice were purchased from the National Cancer Institute (Frederick, MD) and maintained in the animal facilities at the University of Iowa at the appropriate biosafety level according to the University of Iowa Animal Care and Use Committee and National Institutes of Health guidelines. Male and female mice >6 weeks of age were used for experiments; no discernable differences were observed based on sex of the animals.

Human subjects: Patients were recruited at the University of Iowa Hospitals and Clinics, an 811-bed academic tertiary care center. Blood sample acquisition, patient data collection, and analysis were approved by the University of Iowa Institutional Review Board (ID #201804822). Informed consent was obtained from patients or their legally authorized representatives.

Version history

  1. Received: June 4, 2021
  2. Accepted: October 14, 2021
  3. Accepted Manuscript published: October 15, 2021 (version 1)
  4. Version of Record published: November 12, 2021 (version 2)

Copyright

© 2021, jensen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,715
    views
  • 265
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Isaac J jensen
  2. Xiang Li
  3. Patrick W McGonagill
  4. Qiang Shan
  5. Micaela G Fosdick
  6. Mikaela M Tremblay
  7. Jon CD Houtman
  8. Hai-Hui Xue
  9. Thomas S Griffith
  10. Weiqun Peng
  11. Vladimir P Badovinac
(2021)
Sepsis leads to lasting changes in phenotype and function of memory CD8 T cells
eLife 10:e70989.
https://doi.org/10.7554/eLife.70989

Share this article

https://doi.org/10.7554/eLife.70989

Further reading

    1. Immunology and Inflammation
    Tong Feng, Qi Zhang ... Qiao-Feng Wu
    Research Article

    Osteoarthritis (OA) is a degenerative disease with a high prevalence in the elderly population, but our understanding of its mechanisms remains incomplete. Analysis of serum exosomal small RNA sequencing data from clinical patients and gene expression data from OA patient serum and cartilage obtained from the GEO database revealed a common dysregulated miRNA, miR-199b-5p. In vitro cell experiments demonstrated that miR-199b-5p inhibits chondrocyte vitality and promotes extracellular matrix degradation. Conversely, inhibition of miR-199b-5p under inflammatory conditions exhibited protective effects against damage. Local viral injection of miR-199b-5p into mice induced a decrease in pain threshold and OA-like changes. In an OA model, inhibition of miR-199b-5p alleviated the pathological progression of OA. Furthermore, bioinformatics analysis and experimental validation identified Gcnt2 and Fzd6 as potential target genes of MiR-199b-5p. Thus, these results indicated that MiR-199b-5p/Gcnt2 and Fzd6 axis might be a novel therapeutic target for the treatment of OA.

    1. Immunology and Inflammation
    Phillip A Erice, Xinyan Huang ... Antony Rodriguez
    Research Article

    Environmental air irritants including nanosized carbon black (nCB) can drive systemic inflammation, promoting chronic obstructive pulmonary disease (COPD) and emphysema development. The let-7 microRNA (Mirlet7 miRNA) family is associated with IL-17-driven T cell inflammation, a canonical signature of lung inflammation. Recent evidence suggests the Mirlet7 family is downregulated in patients with COPD, however, whether this repression conveys a functional consequence on emphysema pathology has not been elucidated. Here, we show that overall expression of the Mirlet7 clusters, Mirlet7b/Mirlet7c2 and Mirlet7a1/Mirlet7f1/Mirlet7d, are reduced in the lungs and T cells of smokers with emphysema as well as in mice with cigarette smoke (CS)- or nCB-elicited emphysema. We demonstrate that loss of the Mirlet7b/Mirlet7c2 cluster in T cells predisposed mice to exaggerated CS- or nCB-elicited emphysema. Furthermore, ablation of the Mirlet7b/Mirlet7c2 cluster enhanced CD8+IL17a+ T cells (Tc17) formation in emphysema development in mice. Additionally, transgenic mice overexpressing Mirlet7g in T cells are resistant to Tc17 and CD4+IL17a+ T cells (Th17) development when exposed to nCB. Mechanistically, our findings reveal the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), as a direct target of Mirlet7 in T cells. Overall, our findings shed light on the Mirlet7/RORγt axis with Mirlet7 acting as a molecular brake in the generation of Tc17 cells and suggest a novel therapeutic approach for tempering the augmented IL-17-mediated response in emphysema.