Humans actively sample evidence to support prior beliefs

  1. Paula Kaanders  Is a corresponding author
  2. Pradyumna Sepulveda
  3. Tomas Folke
  4. Pietro Ortoleva
  5. Benedetto De Martino  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. University College London, United Kingdom
  3. Rutgers University, United States
  4. Princeton University, United States

Abstract

No one likes to be wrong. Previous research has shown that participants may underweight information incompatible with previous choices, a phenomenon called confirmation bias. In this paper we argue that a similar bias exists in the way information is actively sought. We investigate how choice influences information gathering using a perceptual choice task and find that participants sample more information from a previously chosen alternative. Furthermore, the higher the confidence in the initial choice, the more biased information sampling becomes. As a consequence, when faced with the possibility of revising an earlier decision, participants are more likely to stick with their original choice, even when incorrect. Critically, we show that agency controls this phenomenon. The effect disappears in a fixed sampling condition where presentation of evidence is controlled by the experimenter, suggesting that the way in which confirmatory evidence is acquired critically impacts the decision process. These results suggest active information acquisition plays a critical role in the propagation of strongly held beliefs over time.

Data availability

All data is available on the lab GitHub page (https://github.com/BDMLab).

The following data sets were generated

Article and author information

Author details

  1. Paula Kaanders

    Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
    For correspondence
    paula.kaanders@psy.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5068-1946
  2. Pradyumna Sepulveda

    Institute of Cognitive Neuroscience, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0159-6777
  3. Tomas Folke

    Department of Mathematics and Computer Science, Rutgers University, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Pietro Ortoleva

    Department of Economics, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5943-6621
  5. Benedetto De Martino

    Institute Cognitive of Neuroscience, University College London, London, United Kingdom
    For correspondence
    benedettodemartino@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3555-2732

Funding

Wellcome Trust (Henry Dale Fellowship)

  • Benedetto De Martino

Royal Society (Henry Dale Fellowship)

  • Benedetto De Martino

Chilean National Agency for Research and Development (Scholarship)

  • Pradyumna Sepulveda

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Valentin Wyart, École normale supérieure, PSL University, INSERM, France

Ethics

Human subjects: All participants signed a consent form and both studies were done following the approval given by the University of Cambridge, Cambridge Psychology Research Ethics Committee (PRE.2015.095).

Version history

  1. Received: June 29, 2021
  2. Preprint posted: June 30, 2021 (view preprint)
  3. Accepted: April 8, 2022
  4. Accepted Manuscript published: April 11, 2022 (version 1)
  5. Version of Record published: April 25, 2022 (version 2)
  6. Version of Record updated: June 28, 2022 (version 3)

Copyright

© 2022, Kaanders et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,788
    views
  • 437
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Paula Kaanders
  2. Pradyumna Sepulveda
  3. Tomas Folke
  4. Pietro Ortoleva
  5. Benedetto De Martino
(2022)
Humans actively sample evidence to support prior beliefs
eLife 11:e71768.
https://doi.org/10.7554/eLife.71768

Share this article

https://doi.org/10.7554/eLife.71768

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.