Social-like responses are inducible in asocial Mexican cavefish despite the exhibition of strong repetitive behaviour

  1. Motoko Iwashita
  2. Masato Yoshizawa  Is a corresponding author
  1. University of Hawaii at Manoa, United States

Abstract

Social behaviour is a hallmark of complex animal systems; however, some species appear to have secondarily lost this social ability. In these non-social species, whether social abilities are permanently lost or suppressed is unclear. The blind cavefish Astyanax mexicanus is known to be asocial. Here, we reveal that cavefish exhibited social-like interactions in familiar environments but suppressed these interactions in stress-associated unfamiliar environments. Furthermore, the level of suppression in sociality was positively correlated with that of stereotypic repetitive behaviour, as seen in mammals. Treatment with a human antipsychotic drug targeting the dopaminergic system induced social-like interactions in cavefish, even in unfamiliar environments, while reducing repetitive behaviour. Overall, these results suggest that the antagonistic association between repetitive and social-like behaviours is deeply shared from teleosts through mammals.

Data availability

All data generated and analyzed during this study are included in the supplementary Source Data file. Program scripts/codes are available in the public data depository (https://zenodo.org/record/5122894#.YPnDBR1ujsF). All raw video data are available upon request. Sample video files are available at https://zenodo.org/record/5122894#.YPnDBR1ujsF)

The following data sets were generated

Article and author information

Author details

  1. Motoko Iwashita

    National Institute of Mental Health, University of Hawaii at Manoa, Honolulu, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6653-6823
  2. Masato Yoshizawa

    School of Life Sciences, University of Hawaii at Manoa, Honolulu, United States
    For correspondence
    yoshizaw@hawaii.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8455-8252

Funding

National Institutes of Health (P20GM125508)

  • Masato Yoshizawa

Hawaii Community Foundation (18CON-90818)

  • Masato Yoshizawa

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nicolas Rohner, Stowers Institute for Medical Research, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#17-2560) of the University of Hawaii at Manoa. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University of Hawaii at Manoa (Permit Number: A3423-01). All vital-dye imaging were performed under ice-cold MS222 anesthesia, and every effort was made to minimize suffering

Version history

  1. Preprint posted: August 20, 2020 (view preprint)
  2. Received: July 24, 2021
  3. Accepted: September 17, 2021
  4. Accepted Manuscript published: September 20, 2021 (version 1)
  5. Version of Record published: October 8, 2021 (version 2)

Copyright

© 2021, Iwashita & Yoshizawa

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,066
    views
  • 126
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Motoko Iwashita
  2. Masato Yoshizawa
(2021)
Social-like responses are inducible in asocial Mexican cavefish despite the exhibition of strong repetitive behaviour
eLife 10:e72463.
https://doi.org/10.7554/eLife.72463

Share this article

https://doi.org/10.7554/eLife.72463

Further reading

    1. Ecology
    2. Evolutionary Biology
    Théo Constant, F Stephen Dobson ... Sylvain Giroud
    Research Article

    Seasonal animal dormancy is widely interpreted as a physiological response for surviving energetic challenges during the harshest times of the year (the physiological constraint hypothesis). However, there are other mutually non-exclusive hypotheses to explain the timing of animal dormancy, that is, entry into and emergence from hibernation (i.e. dormancy phenology). Survival advantages of dormancy that have been proposed are reduced risks of predation and competition (the ‘life-history’ hypothesis), but comparative tests across animal species are few. Using the phylogenetic comparative method applied to more than 20 hibernating mammalian species, we found support for both hypotheses as explanations for the phenology of dormancy. In accordance with the life-history hypotheses, sex differences in hibernation emergence and immergence were favored by the sex difference in reproductive effort. In addition, physiological constraint may influence the trade-off between survival and reproduction such that low temperatures and precipitation, as well as smaller body mass, influence sex differences in phenology. We also compiled initial evidence that ectotherm dormancy may be (1) less temperature dependent than previously thought and (2) associated with trade-offs consistent with the life-history hypothesis. Thus, dormancy during non-life-threatening periods that are unfavorable for reproduction may be more widespread than previously thought.

    1. Ecology
    Ari Grele, Tara J Massad ... Lora A Richards
    Research Article

    Declines in biodiversity generated by anthropogenic stressors at both species and population levels can alter emergent processes instrumental to ecosystem function and resilience. As such, understanding the role of biodiversity in ecosystem function and its response to climate perturbation is increasingly important, especially in tropical systems where responses to changes in biodiversity are less predictable and more challenging to assess experimentally. Using large-scale transplant experiments conducted at five neotropical sites, we documented the impacts of changes in intraspecific and interspecific plant richness in the genus Piper on insect herbivory, insect richness, and ecosystem resilience to perturbations in water availability. We found that reductions of both intraspecific and interspecific Piper diversity had measurable and site-specific effects on herbivory, herbivorous insect richness, and plant mortality. The responses of these ecosystem-relevant processes to reduced intraspecific Piper richness were often similar in magnitude to the effects of reduced interspecific richness. Increased water availability reduced herbivory by 4.2% overall, and the response of herbivorous insect richness and herbivory to water availability were altered by both intra- and interspecific richness in a site-dependent manner. Our results underscore the role of intraspecific and interspecific richness as foundations of ecosystem function and the importance of community and location-specific contingencies in controlling function in complex tropical systems.