Plant SYP12 syntaxins mediate an evolutionarily conserved general immunity to filamentous pathogens

  1. Hector Rubiato Molinelli
  2. Mengqi Liu
  3. Richard J O'Connell
  4. Mads Eggert Nielsen  Is a corresponding author
  1. University of Copenhagen, Denmark
  2. INRAE, Université Paris-Saclay, France

Abstract

Filamentous fungal and oomycete plant pathogens that invade by direct penetration through the leaf epidermal cell wall cause devastating plant diseases. Plant pre-invasive immunity towards non-adapted filamentous pathogens is highly effective and durable. Pre- and post-invasive immunity correlates with the formation of evolutionarily conserved and cell-autonomous cell wall structures, named papillae and encasements, respectively. Yet, it is still unresolved how papillae/encasements are formed and whether these defense structures prevent pathogen ingress. Here we show that in Arabidopsis, the two closely related members of the SYP12 clade of syntaxins (PEN1 and SYP122) are indispensable for the formation of papillae and encasements. Moreover, loss-of-function mutants were hampered in pre-invasive immunity towards a range of phylogenetically distant non-adapted filamentous pathogens, underlining the versatility and efficacy of this defense. Complementation studies using SYP12s from the early diverging land plant, Marchantia polymorpha, showed that the SYP12 clade immunity function has survived 470 My of independent evolution. These results suggest that ancestral land plants evolved the SYP12 clade to provide a broad and durable pre-invasive immunity to facilitate their life on land, and pave the way to a better understanding of how adapted pathogens overcome this ubiquitous plant defense strategy.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 3, 4, 5, 6 and 8.

Article and author information

Author details

  1. Hector Rubiato Molinelli

    Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  2. Mengqi Liu

    Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Richard J O'Connell

    INRAE, Université Paris-Saclay, Thiverval-Grignon, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Mads Eggert Nielsen

    Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    maen@plen.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6170-8836

Funding

the villum foundation (VKR023502)

  • Mads Eggert Nielsen

independent research fund denmark, technical and production series (6111-00524B)

  • Mads Eggert Nielsen

Novo Nordisk Fonden (NNF19OC0056457)

  • Mads Eggert Nielsen

Agence Nationale de la Recherche (ANR-17-CAPS-0004-01)

  • Richard J O'Connell

china scholarship council (No. 201906300075)

  • Mengqi Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jian-Min Zhou, Chinese Academy of Sciences, China

Version history

  1. Preprint posted: February 23, 2020 (view preprint)
  2. Received: August 31, 2021
  3. Accepted: January 30, 2022
  4. Accepted Manuscript published: February 4, 2022 (version 1)
  5. Version of Record published: February 22, 2022 (version 2)

Copyright

© 2022, Molinelli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,159
    views
  • 415
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hector Rubiato Molinelli
  2. Mengqi Liu
  3. Richard J O'Connell
  4. Mads Eggert Nielsen
(2022)
Plant SYP12 syntaxins mediate an evolutionarily conserved general immunity to filamentous pathogens
eLife 11:e73487.
https://doi.org/10.7554/eLife.73487

Share this article

https://doi.org/10.7554/eLife.73487

Further reading

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Dietmar Funck, Malte Sinn ... Jörg S Hartig
    Research Article

    Metabolism and biological functions of the nitrogen-rich compound guanidine have long been neglected. The discovery of four classes of guanidine-sensing riboswitches and two pathways for guanidine degradation in bacteria hint at widespread sources of unconjugated guanidine in nature. So far, only three enzymes from a narrow range of bacteria and fungi have been shown to produce guanidine, with the ethylene-forming enzyme (EFE) as the most prominent example. Here, we show that a related class of Fe2+- and 2-oxoglutarate-dependent dioxygenases (2-ODD-C23) highly conserved among plants and algae catalyze the hydroxylation of homoarginine at the C6-position. Spontaneous decay of 6-hydroxyhomoarginine yields guanidine and 2-aminoadipate-6-semialdehyde. The latter can be reduced to pipecolate by pyrroline-5-carboxylate reductase but more likely is oxidized to aminoadipate by aldehyde dehydrogenase ALDH7B in vivo. Arabidopsis has three 2-ODD-C23 isoforms, among which Din11 is unusual because it also accepted arginine as substrate, which was not the case for the other 2-ODD-C23 isoforms from Arabidopsis or other plants. In contrast to EFE, none of the three Arabidopsis enzymes produced ethylene. Guanidine contents were typically between 10 and 20 nmol*(g fresh weight)-1 in Arabidopsis but increased to 100 or 300 nmol*(g fresh weight)-1 after homoarginine feeding or treatment with Din11-inducing methyljasmonate, respectively. In 2-ODD-C23 triple mutants, the guanidine content was strongly reduced, whereas it increased in overexpression plants. We discuss the implications of the finding of widespread guanidine-producing enzymes in photosynthetic eukaryotes as a so far underestimated branch of the bio-geochemical nitrogen cycle and propose possible functions of natural guanidine production.

    1. Plant Biology
    Ivan Kulich, Julia Schmid ... Jiří Friml
    Research Article

    Root gravitropic bending represents a fundamental aspect of terrestrial plant physiology. Gravity is perceived by sedimentation of starch-rich plastids (statoliths) to the bottom of the central root cap cells. Following gravity perception, intercellular auxin transport is redirected downwards leading to an asymmetric auxin accumulation at the lower root side causing inhibition of cell expansion, ultimately resulting in downwards bending. How gravity-induced statoliths repositioning is translated into asymmetric auxin distribution remains unclear despite PIN auxin efflux carriers and the Negative Gravitropic Response of roots (NGR) proteins polarize along statolith sedimentation, thus providing a plausible mechanism for auxin flow redirection. In this study, using a functional NGR1-GFP construct, we visualized the NGR1 localization on the statolith surface and plasma membrane (PM) domains in close proximity to the statoliths, correlating with their movements. We determined that NGR1 binding to these PM domains is indispensable for NGR1 functionality and relies on cysteine acylation and adjacent polybasic regions as well as on lipid and sterol PM composition. Detailed timing of the early events following graviperception suggested that both NGR1 repolarization and initial auxin asymmetry precede the visible PIN3 polarization. This discrepancy motivated us to unveil a rapid, NGR-dependent translocation of PIN-activating AGCVIII kinase D6PK towards lower PMs of gravity-perceiving cells, thus providing an attractive model for rapid redirection of auxin fluxes following gravistimulation.