Single-molecule analysis of the entire perfringolysin O pore formation pathway

  1. Conall McGuinness
  2. James C Walsh  Is a corresponding author
  3. Charles Bayly-Jones
  4. Michelle A Dunstone
  5. Michelle P Christie
  6. Craig J Morton
  7. Michael W Parker
  8. Till Böcking  Is a corresponding author
  1. University of New South Wales, Australia
  2. Monash University, Australia
  3. University of Melbourne, Australia
  4. St Vincents Institute of Medical Research, Australia

Abstract

The cholesterol-dependent cytolysin perfringolysin O (PFO) is secreted by Clostridium perfringens as a bacterial virulence factor able to form giant ring-shaped pores that perforate and ultimately lyse mammalian cell membranes. To resolve the kinetics of all steps in the assembly pathway, we have used single-molecule fluorescence imaging to follow the dynamics of PFO on dye-loaded liposomes that lead to opening of a pore and release of the encapsulated dye. Formation of a long-lived membrane-bound PFO dimer nucleates the growth of an irreversible oligomer. The growing oligomer can insert into the membrane and open a pore at stoichiometries ranging from tetramers to full rings (~35-mers), whereby the rate of insertion increases linearly with the number of subunits. Oligomers that insert before the ring is complete continue to grow by monomer addition post insertion. Overall, our observations suggest that PFO membrane insertion is kinetically controlled.

Data availability

The image analysis software is available at https://github.com/lilbutsa/JIM-Immobilized-Microscopy-Suite. Microscopy image stacks for Figure 1 and Figures 3-8; files containing single-molecule tracks extracted from all image stacks for Figure 2 (single-molecule binding); and a representative subset of image stacks recorded for Figure 2 are available on Dryad (doi: https://doi.org/10.5061/dryad.8w9ghx3q4). The complete set of image stacks collected for Figure 2 is too large (>10 TB) to be included in this repository such that these data are stored on the UNSW data archive (data management plan number D0240569) and can be obtained for research (including commercial) by submitting a request to research.soms@unsw.edu.au.

The following data sets were generated

Article and author information

Author details

  1. Conall McGuinness

    EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. James C Walsh

    EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, Australia
    For correspondence
    james.walsh@unsw.edu.au
    Competing interests
    The authors declare that no competing interests exist.
  3. Charles Bayly-Jones

    Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7573-7715
  4. Michelle A Dunstone

    Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Michelle P Christie

    Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Craig J Morton

    Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5452-5193
  7. Michael W Parker

    Australian Cancer Research Foundation Rational Drug Discovery Centre, St Vincents Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3101-1138
  8. Till Böcking

    EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, Australia
    For correspondence
    till.boecking@unsw.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1165-3122

Funding

National Health and Medical Research Council (APP1182212)

  • Till Böcking

Australian Research Council (FT150100049)

  • Michelle A Dunstone

National Health and Medical Research Council (APP1194263)

  • Michael W Parker

Australian Research Council (DP160101874)

  • Michael W Parker

Australian Research Council (DP200102871)

  • Craig J Morton
  • Michael W Parker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Janice L Robertson, Washington University in St Louis, United States

Version history

  1. Preprint posted: October 19, 2021 (view preprint)
  2. Received: October 21, 2021
  3. Accepted: August 16, 2022
  4. Accepted Manuscript published: August 24, 2022 (version 1)
  5. Version of Record published: September 8, 2022 (version 2)
  6. Version of Record updated: December 7, 2022 (version 3)

Copyright

© 2022, McGuinness et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,425
    views
  • 363
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Conall McGuinness
  2. James C Walsh
  3. Charles Bayly-Jones
  4. Michelle A Dunstone
  5. Michelle P Christie
  6. Craig J Morton
  7. Michael W Parker
  8. Till Böcking
(2022)
Single-molecule analysis of the entire perfringolysin O pore formation pathway
eLife 11:e74901.
https://doi.org/10.7554/eLife.74901

Share this article

https://doi.org/10.7554/eLife.74901

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Claudia D Consalvo, Adedeji M Aderounmu ... Brenda L Bass
    Research Article

    Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1’s helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.