Rapid, reference-free human genotype imputation with denoising autoencoders

  1. Raquel Dias
  2. Doug Evans
  3. Shang-Fu Chen
  4. Kai-Yu Chen
  5. Salvatore Loguercio
  6. Leslie Chan
  7. Ali Torkamani  Is a corresponding author
  1. University of Florida, United States
  2. Scripps Research Institute, United States

Abstract

Genotype imputation is a foundational tool for population genetics. Standard statistical imputation approaches rely on the co-location of large whole-genome sequencing-based reference panels, powerful computing environments, and potentially sensitive genetic study data. This results in computational resource and privacy-risk barriers to access to cutting-edge imputation techniques. Moreover, the accuracy of current statistical approaches is known to degrade in regions of low and complex linkage disequilibrium. Artificial neural network-based imputation approaches may overcome these limitations by encoding complex genotype relationships in easily portable inference models. Here we demonstrate an autoencoder-based approach for genotype imputation, using a large, commonly used reference panel, and spanning the entirety of human chromosome 22. Our autoencoder-based genotype imputation strategy achieved superior imputation accuracy across the allele-frequency spectrum and across genomes of diverse ancestry, while delivering at least 4-fold faster inference run time relative to standard imputation tools.

Data availability

The data that support the findings of this study are available from dbGAP and European Genome-phenome Archive (EGA), but restrictions apply to the availability of these data, which were used under ethics approval for the current study, and so are not openly available to the public. The computational pipeline for autoencoder training and validation is available at https://github.com/TorkamaniLab/Imputation_Autoencoder/tree/master/autoencoder_tuning_pipeline. The python script for calculating imputation accuracy is available at https://github.com/TorkamaniLab/imputation_accuracy_calculator. Instructions on how to access the unique information on the parameters and hyperparameters of each one of the 256 autoencoders is shared through our source code repository at https://github.com/TorkamaniLab/imputator_inference. We also shared the pre-trained autoencoders and instructions on how to use them for imputation at https://github.com/TorkamaniLab/imputator_inference.Imputation data format. The imputation results are exported in variant calling format (VCF) containing the imputed genotypes and imputation quality scores in the form of class probabilities for each one of the three possible genotypes (homozygous reference, heterozygous, and homozygous alternate allele). The probabilities can be used for quality control of the imputation results.

The following previously published data sets were used

Article and author information

Author details

  1. Raquel Dias

    Department of Microbiology and Cell Science, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Doug Evans

    Scripps Research Translational Institute, Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Shang-Fu Chen

    Scripps Research Translational Institute, Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kai-Yu Chen

    Scripps Research Translational Institute, Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Salvatore Loguercio

    Scripps Research Translational Institute, Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Leslie Chan

    Scripps Research Translational Institute, Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ali Torkamani

    Scripps Research Translational Institute, Scripps Research Institute, La Jolla, United States
    For correspondence
    atorkama@scripps.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0232-8053

Funding

National Institutes of Health (R01HG010881)

  • Raquel Dias
  • Doug Evans
  • Shang-Fu Chen
  • Kai-Yu Chen
  • Salvatore Loguercio
  • Ali Torkamani

National Institutes of Health (KL2TR002552)

  • Raquel Dias

National Institutes of Health (U24TR002306)

  • Doug Evans
  • Shang-Fu Chen
  • Kai-Yu Chen
  • Ali Torkamani

National Institutes of Health (UL1TR002550)

  • Doug Evans
  • Shang-Fu Chen
  • Kai-Yu Chen
  • Ali Torkamani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Matthew Stephens, University of Chicago, United States

Version history

  1. Received: November 16, 2021
  2. Preprint posted: December 2, 2021 (view preprint)
  3. Accepted: September 19, 2022
  4. Accepted Manuscript published: September 23, 2022 (version 1)
  5. Version of Record published: October 12, 2022 (version 2)

Copyright

© 2022, Dias et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,908
    views
  • 244
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Raquel Dias
  2. Doug Evans
  3. Shang-Fu Chen
  4. Kai-Yu Chen
  5. Salvatore Loguercio
  6. Leslie Chan
  7. Ali Torkamani
(2022)
Rapid, reference-free human genotype imputation with denoising autoencoders
eLife 11:e75600.
https://doi.org/10.7554/eLife.75600

Share this article

https://doi.org/10.7554/eLife.75600

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Ryan T Bell, Harutyun Sahakyan ... Eugene V Koonin
    Research Article

    A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.

    1. Computational and Systems Biology
    Skander Kazdaghli, Iordanis Kerenidis ... Philip Teare
    Research Article

    Imputing data is a critical issue for machine learning practitioners, including in the life sciences domain, where missing clinical data is a typical situation and the reliability of the imputation is of great importance. Currently, there is no canonical approach for imputation of clinical data and widely used algorithms introduce variance in the downstream classification. Here we propose novel imputation methods based on determinantal point processes (DPP) that enhance popular techniques such as the multivariate imputation by chained equations and MissForest. Their advantages are twofold: improving the quality of the imputed data demonstrated by increased accuracy of the downstream classification and providing deterministic and reliable imputations that remove the variance from the classification results. We experimentally demonstrate the advantages of our methods by performing extensive imputations on synthetic and real clinical data. We also perform quantum hardware experiments by applying the quantum circuits for DPP sampling since such quantum algorithms provide a computational advantage with respect to classical ones. We demonstrate competitive results with up to 10 qubits for small-scale imputation tasks on a state-of-the-art IBM quantum processor. Our classical and quantum methods improve the effectiveness and robustness of clinical data prediction modeling by providing better and more reliable data imputations. These improvements can add significant value in settings demanding high precision, such as in pharmaceutical drug trials where our approach can provide higher confidence in the predictions made.