IL-37 expression reduces acute and chronic neuroinflammation and rescues cognitive impairment in an Alzheimer's disease mouse model

  1. Niklas Lonnemann
  2. Shirin Hosseini
  3. Melanie Ohm
  4. Robert Geffers
  5. Karsten Hiller
  6. Charles A Dinarello  Is a corresponding author
  7. Martin Korte  Is a corresponding author
  1. Technische Universität Braunschweig, Germany
  2. Helmholtz Centre for Infection Research, Germany
  3. University of Colorado Health, United States

Abstract

The anti-inflammatory cytokine interleukin-37 (IL-37) belongs to the IL-1 family but is not expressed in mice. We used a human IL‑37 (hIL-37tg) expressing mouse, which has been subjected to various models of local and systemic inflammation as well as immunological challenges. Previous studies reveal an immunomodulatory role of IL-37, which can be characterized as an important suppressor of innate immunity. Here, we examined the functions of IL-37 in the central nervous system and explored the effects of IL-37 on neuronal architecture and function, microglial phenotype, cytokine production and behavior after inflammatory challenge by intraperitoneal LPS-injection. In wild-type mice, decreased spine density, activated microglial phenotype and impaired long-term potentiation (LTP) were observed after LPS injection, whereas hIL-37tg mice showed no impairment. In addition, we crossed the hIL-37tg mouse with an animal model of Alzheimer's disease (APP/PS1) to investigate the anti-inflammatory properties of IL-37 under chronic neuroinflammatory conditions. Our results show that expression of IL-37 is able to limit inflammation in the brain after acute inflammatory events and prevent loss of cognitive abilities in a mouse model of AD.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for all Figures.

Article and author information

Author details

  1. Niklas Lonnemann

    Department of Cellular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Shirin Hosseini

    Department of Cellular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Melanie Ohm

    Department of Cellular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Robert Geffers

    Genome Analytics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Karsten Hiller

    Braunschweig Integrated Centre of Systems Biology, Technische Universität Braunschweig, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Charles A Dinarello

    Department of Medicine, University of Colorado Health, Aurora, United States
    For correspondence
    dinare333@aol.com
    Competing interests
    The authors declare that no competing interests exist.
  7. Martin Korte

    Department of Cellular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
    For correspondence
    m.korte@tu-bs.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6956-5913

Funding

Deutsche Forschungsgemeinschaft (SFB854)

  • Martin Korte

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Xiaoyu Hu, Tsinghua University, China

Ethics

Animal experimentation: All experimental procedures and protocolls were authorized by the animal welfare representative of the TU Braunschweig and the LAVES of the state of Lower Saxony in Germany (Oldenburg, Germany) (33.19-42502-04-16/2170).

Version history

  1. Preprint posted: November 26, 2021 (view preprint)
  2. Received: November 26, 2021
  3. Accepted: August 29, 2022
  4. Accepted Manuscript published: August 30, 2022 (version 1)
  5. Version of Record published: September 16, 2022 (version 2)

Copyright

© 2022, Lonnemann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 914
    views
  • 282
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Niklas Lonnemann
  2. Shirin Hosseini
  3. Melanie Ohm
  4. Robert Geffers
  5. Karsten Hiller
  6. Charles A Dinarello
  7. Martin Korte
(2022)
IL-37 expression reduces acute and chronic neuroinflammation and rescues cognitive impairment in an Alzheimer's disease mouse model
eLife 11:e75889.
https://doi.org/10.7554/eLife.75889

Share this article

https://doi.org/10.7554/eLife.75889

Further reading

    1. Neuroscience
    Juan Jose Rodriguez Gotor, Kashif Mahfooz ... John F Wesseling
    Research Article

    Vesicles within presynaptic terminals are thought to be segregated into a variety of readily releasable and reserve pools. The nature of the pools and trafficking between them is not well understood, but pools that are slow to mobilize when synapses are active are often assumed to feed pools that are mobilized more quickly, in a series. However, electrophysiological studies of synaptic transmission have suggested instead a parallel organization where vesicles within slowly and quickly mobilized reserve pools would separately feed independent reluctant- and fast-releasing subdivisions of the readily releasable pool. Here, we use FM-dyes to confirm the existence of multiple reserve pools at hippocampal synapses and a parallel organization that prevents intermixing between the pools, even when stimulation is intense enough to drive exocytosis at the maximum rate. The experiments additionally demonstrate extensive heterogeneity among synapses in the relative sizes of the slowly and quickly mobilized reserve pools, which suggests equivalent heterogeneity in the numbers of reluctant and fast-releasing readily releasable vesicles that may be relevant for understanding information processing and storage.

    1. Evolutionary Biology
    2. Neuroscience
    Daniel Thiel, Luis Alfonso Yañez Guerra ... Gáspár Jékely
    Research Article

    Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) – the most common receptors of bilaterian neuropeptides – but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.