Design of an optimal combination therapy with broadly neutralizing antibodies to suppress HIV-1

  1. Colin LaMont
  2. Jakub Otwinowski
  3. Kanika Vanshylla
  4. Henning Gruell
  5. Florian Klein
  6. Armita Nourmohammad  Is a corresponding author
  1. Max Planck Institute for Dynamics and Self-Organization, Germany
  2. University of Cologne, Germany
  3. University of Washington, United States

Abstract

Infusion of broadly neutralizing antibodies (bNAbs) has shown promise as an alternative to anti-retroviral therapy against HIV. A key challenge is to suppress viral escape, which is more effectively achieved with a combination of bNAbs. Here, we propose a computational approach to predict the efficacy of a bNAb therapy based on the population genetics of HIV escape, which we parametrize using high-throughput HIV sequence data from bNAb-naive patients. By quantifying the mutational target size and the fitness cost of HIV-1 escape from bNAbs, we predict the distribution of rebound times in three clinical trials. We show that a cocktail of three bNAbs is necessary to effectively suppress viral escape, and predict the optimal composition of such bNAb cocktail. Our results offer a rational therapy design for HIV, and show how genetic data can be used to predict treatment outcomes and design new approaches to pathogenic control.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. Reference to the previously published data used in this manuscript is provided. Modelling code is uploaded on GitHub at https://github.com/StatPhysBio/HIVTreatmentOptimization, and in the Julia package https://github.com/StatPhysBio/EscapeSimulator.

The following previously published data sets were used
    1. Zanini et al
    (2015) Project: PRJEB9618
    European Nucleotide Archive, Accession no: PRJEB9618.

Article and author information

Author details

  1. Colin LaMont

    Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
    Competing interests
    No competing interests declared.
  2. Jakub Otwinowski

    Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
    Competing interests
    No competing interests declared.
  3. Kanika Vanshylla

    University of Cologne, Cologne, Germany
    Competing interests
    No competing interests declared.
  4. Henning Gruell

    University of Cologne, Cologne, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0725-7138
  5. Florian Klein

    University of Cologne, Cologne, Germany
    Competing interests
    No competing interests declared.
  6. Armita Nourmohammad

    Department of Physics, University of Washington, Seattle, United States
    For correspondence
    armita@uw.edu
    Competing interests
    Armita Nourmohammad, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6245-3553

Funding

Deutsche Forschungsgemeinschaft (1310)

  • Armita Nourmohammad

National Science Foundation (2045054)

  • Armita Nourmohammad

1Max Planck Institute for Dynamics and Self-organization (open access funding)

  • Colin LaMont
  • Jakub Otwinowski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kayla Sprenger, MIT

Version history

  1. Received: December 1, 2021
  2. Preprint posted: December 5, 2021 (view preprint)
  3. Accepted: July 4, 2022
  4. Accepted Manuscript published: July 19, 2022 (version 1)
  5. Version of Record published: September 12, 2022 (version 2)

Copyright

© 2022, LaMont et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,602
    views
  • 514
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Colin LaMont
  2. Jakub Otwinowski
  3. Kanika Vanshylla
  4. Henning Gruell
  5. Florian Klein
  6. Armita Nourmohammad
(2022)
Design of an optimal combination therapy with broadly neutralizing antibodies to suppress HIV-1
eLife 11:e76004.
https://doi.org/10.7554/eLife.76004

Share this article

https://doi.org/10.7554/eLife.76004

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Ryan T Bell, Harutyun Sahakyan ... Eugene V Koonin
    Research Article

    A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.

    1. Evolutionary Biology
    2. Neuroscience
    Daniel Thiel, Luis Alfonso Yañez Guerra ... Gáspár Jékely
    Research Article

    Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) – the most common receptors of bilaterian neuropeptides – but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.