Genetically controlled mtDNA deletions prevent ROS damage by arresting oxidative phosphorylation

  1. Simon Stenberg
  2. Jing Li
  3. Arne B Gjuvsland
  4. Karl Persson
  5. Erik Demitz-Helin
  6. Carles González Peña
  7. Jia-Xing Yue
  8. Ciaran Gilchrist
  9. Timmy Ärengård
  10. Payam Ghiaci
  11. Lisa Larsson-Berghund
  12. Martin Zackrisson
  13. Silvana Smits
  14. Johan Hallin
  15. Johanna L Höög
  16. Mikael Molin
  17. Gianni Liti
  18. Stig W Omholt  Is a corresponding author
  19. Jonas Warringer  Is a corresponding author
  1. University of Gothenburg, Sweden
  2. Sun Yat-sen University Cancer Center, China
  3. Norwegian University of Life Sciences, Norway
  4. University of Gothenburg, Spain
  5. Chalmers University of Technology, Sweden
  6. Université Côte d'Azur, CNRS, INSERM, IRCAN, France

Abstract

Deletion of mitochondrial DNA in eukaryotes is currently attributed to rare accidental events associated with mitochondrial replication or repair of double-strand breaks. We report the discovery that yeast cells arrest harmful intramitochondrial superoxide production by shutting down respiration through genetically controlled deletion of mitochondrial oxidative phosphorylation genes. We show that this process critically involves the antioxidant enzyme superoxide dismutase 2 and two-way mitochondrial-nuclear communication through Rtg2 and Rtg3. While mitochondrial DNA homeostasis is rapidly restored after cessation of a short-term superoxide stress, long-term stress causes maladaptive persistence of the deletion process, leading to complete annihilation of the cellular pool of intact mitochondrial genomes and irrevocable loss of respiratory ability. This shows that oxidative stress-induced mitochondrial impairment may be under strict regulatory control. If the results extend to human cells, the results may prove to be of etiological as well as therapeutic importance with regard to age-related mitochondrial impairment and disease.

Data availability

Sequence data that support the findings of this study have been deposited in Sequencing Read Archive (SRA) with the accession codes PRJNA622836.The growth phenotyping code can be found at https://github.com/Scan-o-Matic/scanomatic.git, the simulation code at https://github.com/HelstVadsom/GenomeAdaptation.git and the imaging code at https://github.com/CamachoDejay/SStenberg_3Dyeast_tools.The authors declare that all other data supporting the findings of this study are available within the paper as Supplemental Information Data S1-S30, which can be previewed at https://data.mendeley.com/datasets/mvx7t7rw2d/draft?a=95381e47-dc80-47af-85ab-e0478912a209.

The following data sets were generated

Article and author information

Author details

  1. Simon Stenberg

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Jing Li

    State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Arne B Gjuvsland

    Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
    Competing interests
    The authors declare that no competing interests exist.
  4. Karl Persson

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Erik Demitz-Helin

    Department of Chemistry and Molecular Biology, University of Gothenburg, erikdemitzhelin, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Carles González Peña

    Department of Chemistry and Molecular Biology, University of Gothenburg, Argentona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7771-7988
  7. Jia-Xing Yue

    State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2122-9221
  8. Ciaran Gilchrist

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  9. Timmy Ärengård

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  10. Payam Ghiaci

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  11. Lisa Larsson-Berghund

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  12. Martin Zackrisson

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  13. Silvana Smits

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  14. Johan Hallin

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  15. Johanna L Höög

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2162-3816
  16. Mikael Molin

    Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3903-8503
  17. Gianni Liti

    Institute for Research on Cancer and Aging, Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2318-0775
  18. Stig W Omholt

    Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
    For correspondence
    Stig.omholt@ntnu.no
    Competing interests
    The authors declare that no competing interests exist.
  19. Jonas Warringer

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    For correspondence
    jonas.warringer@cmb.gu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6144-2740

Funding

Vetenskapsrådet (2014-6547)

  • Jonas Warringer

Agence Nationale de la Recherche (ANR-13-BSV6-0006-01)

  • Gianni Liti

Agence Nationale de la Recherche (ANR-15-IDEX-01)

  • Gianni Liti

Agence Nationale de la Recherche (ANR-16-CE12-0019)

  • Gianni Liti

Agence Nationale de la Recherche (ANR-18-CE12-0004)

  • Gianni Liti

Human Frontiers Science Program (LT000182/2019-L)

  • Johan Hallin

Vetenskapsrådet (2014-4605)

  • Jonas Warringer

Vetenskapsrådet (2015-05427)

  • Mikael Molin

Vetenskapsrådet (2018-03638)

  • Mikael Molin

Vetenskapsrådet (2018-03453)

  • Johanna L Höög

Cancerfonden (2017-778)

  • Mikael Molin

Norges Forskningsråd (178901/V30)

  • Stig W Omholt

Norges Forskningsråd (222364/F20)

  • Stig W Omholt

Agence Nationale de la Recherche (ANR-11-LABX-0028-01)

  • Gianni Liti

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jan Gruber, Yale-NUS College, Singapore

Version history

  1. Preprint posted: November 20, 2020 (view preprint)
  2. Received: December 3, 2021
  3. Accepted: July 7, 2022
  4. Accepted Manuscript published: July 8, 2022 (version 1)
  5. Version of Record published: August 30, 2022 (version 2)

Copyright

© 2022, Stenberg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,648
    views
  • 783
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Simon Stenberg
  2. Jing Li
  3. Arne B Gjuvsland
  4. Karl Persson
  5. Erik Demitz-Helin
  6. Carles González Peña
  7. Jia-Xing Yue
  8. Ciaran Gilchrist
  9. Timmy Ärengård
  10. Payam Ghiaci
  11. Lisa Larsson-Berghund
  12. Martin Zackrisson
  13. Silvana Smits
  14. Johan Hallin
  15. Johanna L Höög
  16. Mikael Molin
  17. Gianni Liti
  18. Stig W Omholt
  19. Jonas Warringer
(2022)
Genetically controlled mtDNA deletions prevent ROS damage by arresting oxidative phosphorylation
eLife 11:e76095.
https://doi.org/10.7554/eLife.76095

Share this article

https://doi.org/10.7554/eLife.76095

Further reading

    1. Cancer Biology
    2. Cell Biology
    Dongyue Jiao, Huiru Sun ... Kun Gao
    Research Article

    Enhanced protein synthesis is a crucial molecular mechanism that allows cancer cells to survive, proliferate, metastasize, and develop resistance to anti-cancer treatments, and often arises as a consequence of increased signaling flux channeled to mRNA-bearing eukaryotic initiation factor 4F (eIF4F). However, the post-translational regulation of eIF4A1, an ATP-dependent RNA helicase and subunit of the eIF4F complex, is still poorly understood. Here, we demonstrate that IBTK, a substrate-binding adaptor of the Cullin 3-RING ubiquitin ligase (CRL3) complex, interacts with eIF4A1. The non-degradative ubiquitination of eIF4A1 catalyzed by the CRL3IBTK complex promotes cap-dependent translational initiation, nascent protein synthesis, oncogene expression, and cervical tumor cell growth both in vivo and in vitro. Moreover, we show that mTORC1 and S6K1, two key regulators of protein synthesis, directly phosphorylate IBTK to augment eIF4A1 ubiquitination and sustained oncogenic translation. This link between the CRL3IBTK complex and the mTORC1/S6K1 signaling pathway, which is frequently dysregulated in cancer, represents a promising target for anti-cancer therapies.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article Updated

    Mediator of ERBB2-driven cell motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high-MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.