Mosaic cis-regulatory evolution drives transcriptional partitioning of HERVH endogenous retrovirus in the human embryo

  1. Thomas Carter
  2. Manvendra Singh
  3. Gabrijela Dumbovic
  4. Jason D Chobirko
  5. John L Rinn
  6. Cédric Feschotte  Is a corresponding author
  1. Cornell University, United States [US]
  2. Cornell University, United States
  3. University of Colorado Boulder, United States

Abstract

The human endogenous retrovirus type-H (HERVH) family is expressed in the preimplantation embryo. A subset of these elements are specifically transcribed in pluripotent stem cells where they appear to exert regulatory activities promoting self-renewal and pluripotency. How HERVH elements achieve such transcriptional specificity remains poorly understood. To uncover the sequence features underlying HERVH transcriptional activity, we performed a phyloregulatory analysis of the long terminal repeats (LTR7) of the HERVH family, which harbor its promoter, using a wealth of regulatory genomics data. We found that the family includes at least 8 previously unrecognized subfamilies that have been active at different timepoints in primate evolution and display distinct expression patterns during human embryonic development. Notably, nearly all HERVH elements transcribed in ESCs belong to one of the youngest subfamilies we dubbed LTR7up. LTR7 sequence evolution was driven by a mixture of mutational processes, including point mutations, duplications, and multiple recombination events between subfamilies, that led to transcription factor binding motif modules characteristic of each subfamily. Using a reporter assay, we show that one such motif, a predicted SOX2/3 binding site unique to LTR7up, is essential for robust promoter activity in induced pluripotent stem cells. Together these findings illuminate the mechanisms by which HERVH diversified its expression pattern during evolution to colonize distinct cellular niches within the human embryo.

Data availability

Scripts, data tables, and notes for figures 1-4,6a and supplemental figures 1-1,2-1,3-1,4-1,5-1,6-2 by TAC and JDC - https://github.com/LumpLord/Mosaic-cis-regulatory-evolution-drives-transcriptional-partitioning-of-HERVH-endogenous-retrovirus..Scripts and data tables by MS for figures 5,6c and supplemental figures 6-1,6-3,5-2 - https://github.com/Manu-1512/LTR7-up

The following previously published data sets were used

Article and author information

Author details

  1. Thomas Carter

    Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States [US]
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7081-3259
  2. Manvendra Singh

    Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8626-5418
  3. Gabrijela Dumbovic

    Department of Biochemistry, University of Colorado Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jason D Chobirko

    Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8495-9152
  5. John L Rinn

    Department of Biochemistry, University of Colorado Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7231-7539
  6. Cédric Feschotte

    Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
    For correspondence
    cf458@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8772-6976

Funding

National Institutes of Health (GM112972)

  • Cédric Feschotte

National Institutes of Health (HG009391)

  • Cédric Feschotte

National Institutes of Health (GM122550)

  • Cédric Feschotte

Cornell Center for Vertebrate Genomics

  • Thomas Carter

Howard Hughes Medical Institute

  • John L Rinn

National Institutes of Health (GM099117)

  • John L Rinn

Cornell Presidential Fellow Program

  • Manvendra Singh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mia T Levine, University of Pennsylvania, United States

Version history

  1. Preprint posted: July 8, 2021 (view preprint)
  2. Received: December 14, 2021
  3. Accepted: February 17, 2022
  4. Accepted Manuscript published: February 18, 2022 (version 1)
  5. Version of Record published: March 10, 2022 (version 2)

Copyright

© 2022, Carter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,270
    views
  • 401
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thomas Carter
  2. Manvendra Singh
  3. Gabrijela Dumbovic
  4. Jason D Chobirko
  5. John L Rinn
  6. Cédric Feschotte
(2022)
Mosaic cis-regulatory evolution drives transcriptional partitioning of HERVH endogenous retrovirus in the human embryo
eLife 11:e76257.
https://doi.org/10.7554/eLife.76257

Share this article

https://doi.org/10.7554/eLife.76257

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Céline Petitgas, Laurent Seugnet ... Serge Birman
    Research Article

    Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch–Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.

    1. Genetics and Genomics
    Gbolahan Bamgbose, Guillaume Bordet ... Alexei Tulin
    Research Article

    PARP-1 is central to transcriptional regulation under both normal and stress conditions, with the governing mechanisms yet to be fully understood. Our biochemical and ChIP-seq-based analyses showed that PARP-1 binds specifically to active histone marks, particularly H4K20me1. We found that H4K20me1 plays a critical role in facilitating PARP-1 binding and the regulation of PARP-1-dependent loci during both development and heat shock stress. Here, we report that the sole H4K20 mono-methylase, pr-set7, and parp-1 Drosophila mutants undergo developmental arrest. RNA-seq analysis showed an absolute correlation between PR-SET7- and PARP-1-dependent loci expression, confirming co-regulation during developmental phases. PARP-1 and PR-SET7 are both essential for activating hsp70 and other heat shock genes during heat stress, with a notable increase of H4K20me1 at their gene body. Mutating pr-set7 disrupts monomethylation of H4K20 along heat shock loci and abolish PARP-1 binding there. These data strongly suggest that H4 monomethylation is a key triggering point in PARP-1 dependent processes in chromatin.