Transversal functional connectivity and scene-specific processing in the human entorhinal-hippocampal circuitry

  1. Xenia Grande  Is a corresponding author
  2. Magdalena M Sauvage
  3. Andreas Becke
  4. Emrah Düzel
  5. David Berron  Is a corresponding author
  1. German Center for Neurodegenerative Diseases, Germany
  2. Leibniz Institute for Neurobiology, Germany
  3. Otto-von-Guericke University Magdeburg, Germany

Abstract

Scene and object information reach the entorhinal-hippocampal circuitry in partly segregated cortical processing streams. Converging evidence suggests that such information-specific streams organize the cortical - entorhinal interaction and the circuitry's inner communication along the transversal axis of hippocampal subiculum and CA1. Here, we leveraged ultra-high field functional imaging and advance Maass, Berron et al. (2015) who report two functional routes segregating the entorhinal cortex (EC) and the subiculum. We identify entorhinal subregions based on preferential functional connectivity with perirhinal Area 35 and 36, parahippocampal and retrosplenial cortical sources (referred to as ECArea35-based, ECArea36-based, ECPHC-based, ECRSC-based, respectively). Our data show specific scene processing in the functionally connected ECPHC-based and distal subiculum. Another route, that functionally connects the ECArea35-based and a newly identified ECRSC-based with the subiculum/CA1 border, however, shows no selectivity between object and scene conditions. Our results are consistent with transversal information-specific pathways in the human entorhinal-hippocampal circuitry, with anatomically organized convergence of cortical processing streams and a unique route for scene information. Our study thus further characterizes the functional organization of this circuitry and its information-specific role in memory function.

Data availability

Source data that contain numerical data used to generate Figure 2, Figure 3, Figure 4, Appendix 1 Figure 2, Appendix 1 Figure 3, Appendix 1 Figure 4, Appendix 5 Figure 1 as well as group-level statistical maps (referred to as Source Code 1-16) that underlie Figure 1, Figure 2, Appendix 1 Figure 1, Appendix 1 Figure 2, Appendix 3 Figure 1, Appendix 3 Figure 2 and Appendix 4 Figure 1 have been provided under:Open Science Framework. ID 9v3qp. https://osf.io/9v3qp

The following data sets were generated

Article and author information

Author details

  1. Xenia Grande

    German Center for Neurodegenerative Diseases, Magdeburg, Germany
    For correspondence
    xenia.grande@dzne.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2486-3201
  2. Magdalena M Sauvage

    Functional Architecture of Memory Department, Leibniz Institute for Neurobiology, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7586-6410
  3. Andreas Becke

    Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Emrah Düzel

    Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. David Berron

    German Center for Neurodegenerative Diseases, Magdeburg, Germany
    For correspondence
    david.berron@dzne.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1558-1883

Funding

Horizon 2020 Research and Innovation Programme (785907 (HBP SGA2) and 945539 (HBP SGA3))

  • Emrah Düzel

Deutsche Forschungsgemeinschaft (Project-ID 42589994)

  • Magdalena M Sauvage
  • Emrah Düzel

HORIZON EUROPE Marie Sklodowska-Curie Actions (843074)

  • David Berron

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Muireann Irish, University of Sydney, Australia

Ethics

Human subjects: Informed consent and consent to publish was obtained from human participants.The study received approval by the ethics committee of Otto-von-Guericke University, Magdeburg (Germany) under reference number 128/14.

Version history

  1. Preprint posted: December 18, 2021 (view preprint)
  2. Received: January 11, 2022
  3. Accepted: October 11, 2022
  4. Accepted Manuscript published: October 12, 2022 (version 1)
  5. Accepted Manuscript updated: October 13, 2022 (version 2)
  6. Version of Record published: November 11, 2022 (version 3)

Copyright

© 2022, Grande et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,042
    views
  • 306
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xenia Grande
  2. Magdalena M Sauvage
  3. Andreas Becke
  4. Emrah Düzel
  5. David Berron
(2022)
Transversal functional connectivity and scene-specific processing in the human entorhinal-hippocampal circuitry
eLife 11:e76479.
https://doi.org/10.7554/eLife.76479

Share this article

https://doi.org/10.7554/eLife.76479

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Donghui Yan, Bowen Hu ... Qiongshi Lu
    Research Article

    Rich data from large biobanks, coupled with increasingly accessible association statistics from genome-wide association studies (GWAS), provide great opportunities to dissect the complex relationships among human traits and diseases. We introduce BADGERS, a powerful method to perform polygenic score-based biobank-wide association scans. Compared to traditional approaches, BADGERS uses GWAS summary statistics as input and does not require multiple traits to be measured in the same cohort. We applied BADGERS to two independent datasets for late-onset Alzheimer’s disease (AD; n=61,212). Among 1738 traits in the UK biobank, we identified 48 significant associations for AD. Family history, high cholesterol, and numerous traits related to intelligence and education showed strong and independent associations with AD. Furthermore, we identified 41 significant associations for a variety of AD endophenotypes. While family history and high cholesterol were strongly associated with AD subgroups and pathologies, only intelligence and education-related traits predicted pre-clinical cognitive phenotypes. These results provide novel insights into the distinct biological processes underlying various risk factors for AD.

    1. Neuroscience
    Ya-Hui Lin, Li-Wen Wang ... Li-An Chu
    Research Article

    Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency. HIF-Clear also supports expansion microscopy and can be performed on a non-sectioned 15-year-old FFPE specimen, as well as a 3-month formalin-fixed mouse brain. Thus, HIF-Clear represents a feasible approach for researching archived FFPE specimens for future neuroscientific and 3D neuropathological analyses.