Transcriptional states of retroelement-inserted regions and specific KRAB zinc finger protein association are correlated with DNA methylation of retroelements in human male germ cells

  1. Kei Fukuda  Is a corresponding author
  2. Yoshinori Makino
  3. Satoru Kaneko
  4. Chikako Shimura
  5. Yuki Okada
  6. Kenji Ichiyanagi
  7. Yoichi Shinkai  Is a corresponding author
  1. RIKEN, Japan
  2. The University of Tokyo, Japan
  3. Tokyo Dental College Ichikawa General Hospital, Japan
  4. Nagoya University, Japan

Abstract

DNA methylation, repressive histone modifications, and PIWI-interacting RNAs are essential for controlling retroelement silencing in mammalian germ lines. Dysregulation of retroelement silencing is associated with male sterility. Although retroelement silencing mechanisms have been extensively studied in mouse germ cells, little progress has been made in humans. Here, we show that the Krüppel-associated box domain zinc finger proteins (KRAB-ZFPs) are associated with DNA methylation of retroelements in human primordial germ cells (hPGCs). Further, we show that the hominoid-specific retroelement SINE-VNTR-Alus (SVA) is subjected to transcription-directed de novo DNA methylation during human spermatogenesis. The degree of de novo DNA methylation in SVAs varies among human individuals, which confers significant inter-individual epigenetic variation in sperm. Collectively, our results highlight potential molecular mechanisms for the regulation of retroelements in human male germ cells.

Data availability

All reads from amplicon-seq in this study have been submitted to the Gene Expression Omnibus under accession number GSE174562.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Kei Fukuda

    Cellular Memory Laboratory, RIKEN, Wako, Japan
    For correspondence
    kei.fukuda@riken.jp
    Competing interests
    The authors declare that no competing interests exist.
  2. Yoshinori Makino

    Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Satoru Kaneko

    Department of Obstetrics and Gynecology, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Chikako Shimura

    Cellular Memory Laboratory, RIKEN, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Yuki Okada

    Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Kenji Ichiyanagi

    Department of Animal Sciences, Nagoya University, Nagoya, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Yoichi Shinkai

    Cellular Memory Laboratory, RIKEN, Wako, Japan
    For correspondence
    yshinkai@riken.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6051-2484

Funding

Japan Society for the Promotion of Science (18H05530,18H03991)

  • Yoichi Shinkai

RIKEN (SPDR)

  • Kei Fukuda

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Deborah Bourc'his, Institut Curie, France

Ethics

Human subjects: This study was approved by the ethics committees of RIKEN, Tokyo University, and Ichikawa General Hospital.All study participants were briefed about the aims of the study and the parameters to be measured, and consent was obtained.

Version history

  1. Preprint posted: May 19, 2021 (view preprint)
  2. Received: January 6, 2022
  3. Accepted: March 21, 2022
  4. Accepted Manuscript published: March 22, 2022 (version 1)
  5. Version of Record published: March 30, 2022 (version 2)

Copyright

© 2022, Fukuda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,453
    views
  • 220
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kei Fukuda
  2. Yoshinori Makino
  3. Satoru Kaneko
  4. Chikako Shimura
  5. Yuki Okada
  6. Kenji Ichiyanagi
  7. Yoichi Shinkai
(2022)
Transcriptional states of retroelement-inserted regions and specific KRAB zinc finger protein association are correlated with DNA methylation of retroelements in human male germ cells
eLife 11:e76822.
https://doi.org/10.7554/eLife.76822

Share this article

https://doi.org/10.7554/eLife.76822

Further reading

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Gregory Caleb Howard, Jing Wang ... William P Tansey
    Research Article

    The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the ‘WIN’ site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.