Cells use molecular working memory to navigate inchanging chemoattractant fields

  1. Akhilesh Nandan
  2. Abhishek Das
  3. Robert Lott
  4. Aneta Koseska  Is a corresponding author
  1. Max Planck Institute for Neurobiology of Behavior - caesar, Germany
  2. Max Planck Institute of Molecular Physiology, Germany

Abstract

In order to migrate over large distances, cells within tissues and organisms rely on sensing local gradient cues which are irregular, conflicting, and changing over time and space. The mechanism how they generate persistent directional migration when signals are disrupted, while still remaining adaptive to signal's localization changes remain unknown. Here we find that single cells utilize a molecular mechanism akin to a working memory to satisfy these two opposing demands. We derive theoretically that this is characteristic for receptor networks maintained away from steady states. Time-resolved live-cell imaging of Epidermal growth factor receptor (EGFR) phosphorylation dynamics shows that cells transiently memorize position of encountered signals via slow-escaping remnant of the polarized signaling state, a dynamical 'ghost', driving memory-guided persistent directional migration. The metastability of this state further enables migrational adaptation when encountering new signals. We thus identify basic mechanism of real-time computations underlying cellular navigation in changing chemoattractant fields.

Data availability

Source data is provided with the submission. The numerical data used to generate the corresponding figures can be obtained from the codes deposited in https://github.com/akhileshpnn/Cell-memory.

The following data sets were generated

Article and author information

Author details

  1. Akhilesh Nandan

    Cellular Computations and Learning, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Abhishek Das

    Cellular Computations and Learning, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Robert Lott

    Cellular Computations and Learning, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Aneta Koseska

    Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    For correspondence
    aneta.koseska@mpinb.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4263-2340

Funding

Max Planck Society

  • Aneta Koseska

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Arvind Murugan, University of Chicago, United States

Version history

  1. Preprint posted: November 12, 2021 (view preprint)
  2. Received: January 6, 2022
  3. Accepted: June 3, 2022
  4. Accepted Manuscript published: June 6, 2022 (version 1)
  5. Version of Record published: July 14, 2022 (version 2)

Copyright

© 2022, Nandan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,035
    views
  • 482
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Akhilesh Nandan
  2. Abhishek Das
  3. Robert Lott
  4. Aneta Koseska
(2022)
Cells use molecular working memory to navigate inchanging chemoattractant fields
eLife 11:e76825.
https://doi.org/10.7554/eLife.76825

Share this article

https://doi.org/10.7554/eLife.76825

Further reading

    1. Developmental Biology
    2. Physics of Living Systems
    Raphaël Clément
    Insight

    Geometric criteria can be used to assess whether cell intercalation is active or passive during the convergent extension of tissue.

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Taegon Chung, Iksoo Chang, Sangyeol Kim
    Research Article

    Locomotion is a fundamental behavior of Caenorhabditis elegans (C. elegans). Previous works on kinetic simulations of animals helped researchers understand the physical mechanisms of locomotion and the muscle-controlling principles of neuronal circuits as an actuator part. It has yet to be understood how C. elegans utilizes the frictional forces caused by the tension of its muscles to perform sequenced locomotive behaviors. Here, we present a two-dimensional rigid body chain model for the locomotion of C. elegans by developing Newtonian equations of motion for each body segment of C. elegans. Having accounted for friction-coefficients of the surrounding environment, elastic constants of C. elegans, and its kymogram from experiments, our kinetic model (ElegansBot) reproduced various locomotion of C. elegans such as, but not limited to, forward-backward-(omega turn)-forward locomotion constituting escaping behavior and delta-turn navigation. Additionally, ElegansBot precisely quantified the forces acting on each body segment of C. elegans to allow investigation of the force distribution. This model will facilitate our understanding of the detailed mechanism of various locomotive behaviors at any given friction-coefficients of the surrounding environment. Furthermore, as the model ensures the performance of realistic behavior, it can be used to research actuator-controller interaction between muscles and neuronal circuits.