On the flexibility of the cellular amination network in E. coli

  1. Helena Schulz-Mirbach
  2. Alexandra Müller
  3. Tong Wu
  4. Pascal Pfister
  5. Selçuk Aslan
  6. Lennart Schada von Borzyskowski
  7. Tobias J Erb
  8. Arren Bar-Even
  9. Steffen N Lindner  Is a corresponding author
  1. Max Planck Institute of Molecular Plant Physiology, Germany
  2. Max Planck Institute for Terrestrial Microbiology, Germany

Abstract

Ammonium (NH4+) is essential to generate the nitrogenous building blocks of life. It gets assimilated via the canonical biosynthetic routes to glutamate and is further distributed throughout metabolism via a network of transaminases. To study the flexibility of this network, we constructed an Escherichia coli glutamate auxotrophic strain. This strain allowed us to systematically study which amino acids serve as amine sources and found that several amino acids complement the auxotrophy, either by producing glutamate via transamination reactions or by their conversion to glutamate. In this network, we identified aspartate transaminase AspC as a major connector between many amino acids and glutamate. Additionally, we extended the transaminase network by the amino acids β-alanine, alanine, glycine, and serine as new amine sources and identified d-amino acid dehydrogenase (DadA) as an intracellular amino acid sink removing substrates from transaminase reactions. Finally, ammonium assimilation routes producing aspartate or leucine were introduced. Our study reveals the high flexibility of the cellular amination network, both in terms of transaminase promiscuity and adaptability to new connections and ammonium entry points.

Data availability

sequencing data has been deposited at Dryad

The following data sets were generated

Article and author information

Author details

  1. Helena Schulz-Mirbach

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5376-9185
  2. Alexandra Müller

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Tong Wu

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Pascal Pfister

    Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Selçuk Aslan

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Lennart Schada von Borzyskowski

    Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Tobias J Erb

    Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Arren Bar-Even

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1039-4328
  9. Steffen N Lindner

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    For correspondence
    Lindner@mpimp-golm.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3226-3043

Funding

Bundesministerium für Bildung und Forschung (031B0825B)

  • Steffen N Lindner

Deutsche Forschungsgemeinschaft (SFB987)

  • Tobias J Erb

Max Planck Institute of Molecular Plant Physiology (open access funding)

  • Helena Schulz-Mirbach
  • Alexandra Müller
  • Tong Wu
  • Selçuk Aslan
  • Arren Bar-Even
  • Steffen N Lindner

Max Planck Institute for Terrestrial Microbiology (open access funding)

  • Pascal Pfister

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ahmad S Khalil, Boston University, United States

Version history

  1. Preprint posted: January 27, 2022 (view preprint)
  2. Received: February 1, 2022
  3. Accepted: July 22, 2022
  4. Accepted Manuscript published: July 25, 2022 (version 1)
  5. Version of Record published: September 1, 2022 (version 2)

Copyright

© 2022, Schulz-Mirbach et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,649
    views
  • 459
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Helena Schulz-Mirbach
  2. Alexandra Müller
  3. Tong Wu
  4. Pascal Pfister
  5. Selçuk Aslan
  6. Lennart Schada von Borzyskowski
  7. Tobias J Erb
  8. Arren Bar-Even
  9. Steffen N Lindner
(2022)
On the flexibility of the cellular amination network in E. coli
eLife 11:e77492.
https://doi.org/10.7554/eLife.77492

Share this article

https://doi.org/10.7554/eLife.77492

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.

    1. Cell Biology
    Jun Yang, Shitian Zou ... Xiaochun Bai
    Research Article

    Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.