Deep learning based feature extraction for prediction and interpretation of sharp-wave ripples in the rodent hippocampus

  1. Andrea Navas-Olive
  2. Rodrigo Amaducci
  3. Maria-Teresa Jurado-Parras
  4. Enrique R Sebastian
  5. Liset M de la Prida  Is a corresponding author
  1. Instituto Cajal, Spain
  2. Universidad Autónoma de Madrid, Spain

Abstract

Local field potential (LFP) deflections and oscillations define hippocampal sharp-wave ripples (SWR), one of the most synchronous events of the brain. SWR reflect firing and synaptic current sequences emerging from cognitively relevant neuronal ensembles. While spectral analysis have permitted advances, the surge of ultra-dense recordings now call for new automatic detection strategies. Here, we show how one-dimensional convolutional networks operating over high-density LFP hippocampal recordings allowed for automatic identification of SWR from the rodent hippocampus. When applied without retraining to new datasets and ultra-dense hippocampus-wide recordings, we discovered physiologically relevant processes associated to the emergence of SWR, prompting for novel classification criteria. To gain interpretability, we developed a method to interrogate the operation of the artificial network. We found it relied in feature-based specialization, which permit identification of spatially segregated oscillations and deflections, as well as synchronous population firing typical of replay. Thus, using deep learning based approaches may change the current heuristic for a better mechanistic interpretation of these relevant neurophysiological events.

Data availability

Data is deposited in the Figshare repository https://figshare.com/projects/cnn-ripple-data/117897. The trained model is accessible at the Github repository for both Python: https://github.com/PridaLab/cnn-ripple, and Matlab: https://github.com/PridaLab/cnn-matlab Code visualization and detection is shown in an interactive notebook https://colab.research.google.com/github/PridaLab/cnn-ripple/blob/main/src/notebooks/cnn-example.ipynb . The online detection Open Ephys plugin is accessible at the Github repository: https://github.com/PridaLab/CNNRippleDetectorOEPlugin

Article and author information

Author details

  1. Andrea Navas-Olive

    Functional and Systems Neuroscience, Instituto Cajal, Madrid, Spain
    Competing interests
    No competing interests declared.
  2. Rodrigo Amaducci

    Grupo de Neurocomputación Biológica, Universidad Autónoma de Madrid, Madrid, Spain
    Competing interests
    No competing interests declared.
  3. Maria-Teresa Jurado-Parras

    Functional and Systems Neuroscience, Instituto Cajal, Madrid, Spain
    Competing interests
    No competing interests declared.
  4. Enrique R Sebastian

    Functional and Systems Neuroscience, Instituto Cajal, Madrid, Spain
    Competing interests
    No competing interests declared.
  5. Liset M de la Prida

    Functional and Systems Neuroscience, Instituto Cajal, Madrid, Spain
    For correspondence
    lmprida@cajal.csic.es
    Competing interests
    Liset M de la Prida, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0160-6472

Funding

Fundacion La Caixa (LCF/PR/HR21/52410030)

  • Liset M de la Prida

Ministerio de Educacion (FPU17/03268)

  • Andrea Navas-Olive

Universidad Autónoma de Madrid (FPI-UAM-2017)

  • Rodrigo Amaducci

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Adrien Peyrache, McGill University, Canada

Ethics

Animal experimentation: All protocols and procedures were performed according to the Spanish legislation (R.D. 1201/2005 and L.32/2007) and the European Communities Council Directive 2003 (2003/65/CE). Experiments and procedures were approved by the Ethics Committee of the Instituto Cajal and the Spanish Research Council (PROEX131-16 and PROEX161-19). All surgical procedures were performed under isoflurane anesthesia and every effort was made to minimize suffering.

Version history

  1. Received: February 10, 2022
  2. Preprint posted: March 16, 2022 (view preprint)
  3. Accepted: September 2, 2022
  4. Accepted Manuscript published: September 5, 2022 (version 1)
  5. Version of Record published: October 13, 2022 (version 2)

Copyright

© 2022, Navas-Olive et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,285
    views
  • 512
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrea Navas-Olive
  2. Rodrigo Amaducci
  3. Maria-Teresa Jurado-Parras
  4. Enrique R Sebastian
  5. Liset M de la Prida
(2022)
Deep learning based feature extraction for prediction and interpretation of sharp-wave ripples in the rodent hippocampus
eLife 11:e77772.
https://doi.org/10.7554/eLife.77772

Share this article

https://doi.org/10.7554/eLife.77772

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Neuroscience
    Kenta Abe, Yuki Kambe ... Tatsuo Sato
    Research Article

    Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.