Pathogenic mutations in the chromokinesin KIF22 disrupt anaphase chromosome segregation

Abstract

The chromokinesin KIF22 generates forces that contribute to mitotic chromosome congression and alignment. Mutations in the a2 helix of the motor domain of KIF22 have been identified in patients with abnormal skeletal development, and we report the identification of a patient with a novel mutation in the KIF22 tail. We demonstrate that pathogenic mutations do not result in a loss of KIF22's functions in early mitosis. Instead, mutations disrupt chromosome segregation in anaphase, resulting in reduced proliferation, abnormal daughter cell nuclear morphology, and, in a subset of cells, cytokinesis failure. This phenotype could be explained by a failure of KIF22 to inactivate in anaphase. Consistent with this model, constitutive activation of the motor via a known site of phosphoregulation in the tail phenocopied the effects of pathogenic mutations. These results suggest the motor domain a2 helix may be an important site for regulation of KIF22 activity at the metaphase to anaphase transition. In support of this conclusion, mimicking phosphorylation of a2 helix residue T158 also prevents inactivation of KIF22 in anaphase. These findings demonstrate the importance of both the head and tail of the motor in regulating the activity of KIF22 and offer insight into the cellular consequences of preventing KIF22 inactivation and disrupting force balance in anaphase.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source Data files have been provided for Figure 2, Figure 2- Figure Supplement 1, Figure 3, Figure 4, Figure 4- Figure Supplement 1, Figure 5, Figure 6, Figure 6- Figure Supplement 1, Figure 7, Figure 8, Figure 8- Figure Supplement 1, Figure 9, Figure 9- Figure Supplement 1, Figure 9- Figure Supplement 2, and Figure 9- Figure Supplement 3.

Article and author information

Author details

  1. Alex F Thompson

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Patrick R Blackburn

    Laboratory Medicine and Pathology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0658-1275
  3. Noah S Arons

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sarah N Stevens

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Dusica Babovic-Vuksanovic

    Laboratory Medicine and Pathology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jane B Lian

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Eric W Klee

    Biomedical Informatics, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2946-5795
  8. Jason Stumpff

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    For correspondence
    jstumpff@uvm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0392-1254

Funding

National Institutes of Health (F31AR074887)

  • Alex F Thompson

National Institutes of Health (R01GM130556)

  • Jason Stumpff

National Institutes of Health (R01GM121491)

  • Jason Stumpff

National Institutes of Health (R35GM144133)

  • Jason Stumpff

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Julie P I Welburn, University of Edinburgh, United Kingdom

Version history

  1. Preprint posted: September 30, 2021 (view preprint)
  2. Received: March 15, 2022
  3. Accepted: June 21, 2022
  4. Accepted Manuscript published: June 22, 2022 (version 1)
  5. Version of Record published: July 21, 2022 (version 2)

Copyright

© 2022, Thompson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,540
    views
  • 278
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alex F Thompson
  2. Patrick R Blackburn
  3. Noah S Arons
  4. Sarah N Stevens
  5. Dusica Babovic-Vuksanovic
  6. Jane B Lian
  7. Eric W Klee
  8. Jason Stumpff
(2022)
Pathogenic mutations in the chromokinesin KIF22 disrupt anaphase chromosome segregation
eLife 11:e78653.
https://doi.org/10.7554/eLife.78653

Share this article

https://doi.org/10.7554/eLife.78653

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.

    1. Cell Biology
    Jun Yang, Shitian Zou ... Xiaochun Bai
    Research Article

    Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.