Balancing selection on genomic deletion polymorphisms in humans

  1. Alber Aqil
  2. Leo Speidel
  3. Pavlos Pavlidis
  4. Omer Gokcumen  Is a corresponding author
  1. University at Buffalo, State University of New York, United States
  2. University College London, United Kingdom
  3. Foundation for Research and Technology Hellas, Greece

Abstract

A key question in biology is why genomic variation persists in a population for extended periods. Recent studies have identified examples of genomic deletions that have remained polymorphic in the human lineage for hundreds of millennia, ostensibly owing to balancing selection. Nevertheless, genome-wide investigation of ancient and possibly adaptive deletions remains imperative. Here, we demonstrate an excess of polymorphisms in present-day humans that predate the modern human-Neanderthal split (ancient polymorphisms), which cannot be explained solely by selectively neutral scenarios. We analyze the adaptive mechanisms that underlie this excess in deletion polymorphisms. Using a previously published measure of balancing selection, we show that this excess of ancient deletions is largely owing to balancing selection. Based on the absence of signatures of overdominance, we conclude that it is a rare mode of balancing selection among ancient deletions. Instead, more complex scenarios involving spatially and temporally variable selective pressures are likely more common mechanisms. Our results suggest that balancing selection resulted in ancient deletions harboring disproportionately more exonic variants with GWAS associations. We further found that ancient deletions are significantly enriched for traits related to metabolism and immunity. As a by-product of our analysis, we show that deletions are, on average, more deleterious than single-nucleotide variants. We can now argue that not only is a vast majority of common variants shared among human populations, but a considerable portion of biologically relevant variants has been segregating among our ancestors for hundreds of thousands, if not millions, of years.

Data availability

All data that are used in the study can be found publically. The references and databases are provided in the manuscript. The code and resulting datasets are all provided either through our laboratory's GitHub page, FigShare, or as supplementary tables.

The following data sets were generated
The following previously published data sets were used
    1. Neale et al
    (2018) UK Biobank - Curated
    https://docs.google.com/spreadsheets/d/1kvPoupSzsSFBNSztMzl04xMoSC3Kcx3CrjVf4yBmESU/edit#gid=227859291.
    1. Londsdale et al
    (2013) GTEX
    dbGaP accession number phs000424.vN.pN.

Article and author information

Author details

  1. Alber Aqil

    Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6784-6495
  2. Leo Speidel

    Genetics Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Pavlos Pavlidis

    Institute of Computer Science (ICS), Foundation for Research and Technology Hellas, Heraklion, Greece
    Competing interests
    The authors declare that no competing interests exist.
  4. Omer Gokcumen

    Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, United States
    For correspondence
    gokcumen@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4371-679X

Funding

National Science Foundation (2123284)

  • Omer Gokcumen

Sir Henry Wellcome Fellowship (220457/Z/20/Z)

  • Leo Speidel

Wellcome Trust

  • Leo Speidel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Philipp W Messer, Cornell University, United States

Ethics

Human subjects: This study investigated variation in previously published anonymized genome data from the 1000 Genomes Project.

Version history

  1. Received: March 31, 2022
  2. Preprint posted: April 28, 2022 (view preprint)
  3. Accepted: January 5, 2023
  4. Accepted Manuscript published: January 10, 2023 (version 1)
  5. Accepted Manuscript updated: January 11, 2023 (version 2)
  6. Version of Record published: February 21, 2023 (version 3)

Copyright

© 2023, Aqil et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,533
    views
  • 452
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alber Aqil
  2. Leo Speidel
  3. Pavlos Pavlidis
  4. Omer Gokcumen
(2023)
Balancing selection on genomic deletion polymorphisms in humans
eLife 12:e79111.
https://doi.org/10.7554/eLife.79111

Share this article

https://doi.org/10.7554/eLife.79111

Further reading

    1. Evolutionary Biology
    Raphael Aguillon, Mieka Rinsky ... Oren Levy
    Research Article

    The circadian clock enables anticipation of the day/night cycle in animals ranging from cnidarians to mammals. Circadian rhythms are generated through a transcription-translation feedback loop (TTFL or pacemaker) with CLOCK as a conserved positive factor in animals. However, CLOCK’s functional evolutionary origin and mechanism of action in basal animals are unknown. In the cnidarian Nematostella vectensis, pacemaker gene transcript levels, including NvClk (the Clock ortholog), appear arrhythmic under constant darkness, questioning the role of NvCLK. Utilizing CRISPR/Cas9, we generated a NvClk allele mutant (NvClkΔ), revealing circadian behavior loss under constant dark (DD) or light (LL), while maintaining a 24 hr rhythm under light-dark condition (LD). Transcriptomics analysis revealed distinct rhythmic genes in wild-type (WT) polypsunder LD compared to DD conditions. In LD, NvClkΔ/Δ polyps exhibited comparable numbers of rhythmic genes, but were reduced in DD. Furthermore, under LD, the NvClkΔ/Δ polyps showed alterations in temporal pacemaker gene expression, impacting their potential interactions. Additionally, differential expression of non-rhythmic genes associated with cell division and neuronal differentiation was observed. These findings revealed that a light-responsive pathway can partially compensate for circadian clock disruption, and that the Clock gene has evolved in cnidarians to synchronize rhythmic physiology and behavior with the diel rhythm of the earth’s biosphere.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Ryan T Bell, Harutyun Sahakyan ... Eugene V Koonin
    Research Article

    A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.