A spatiotemporal reconstruction of the C. elegans pharyngeal cuticle reveals a structure rich in phase-separating proteins

  1. Muntasir Kamal
  2. Levon Tokmakjian
  3. Jessica Knox
  4. Peter Mastrangelo
  5. Jingxiu Ji
  6. Hao Cai
  7. Jakub W Wojciechowski
  8. Michael P Hughes
  9. Kristóf Takács
  10. Xiaoquan Chu
  11. Jianfeng Pei
  12. Vince Grolmusz
  13. Malgorzata Kotulska
  14. Julie Deborah Forman-Kay
  15. Peter J Roy  Is a corresponding author
  1. University of Toronto, Canada
  2. Hospital for Sick Children, Canada
  3. Wroclaw University of Science and Technolog, Poland
  4. St. Jude Children's Research Hospital, United States
  5. Eötvös Loránd University, Hungary
  6. Tsinghua University, China
  7. Peking University, China
  8. Wroclaw University of Science and Technology, Poland

Abstract

How the cuticles of the roughly 4.5 million species of ecdysozoan animals are constructed is not well understood. Here, we systematically mine gene expression datasets to uncover the spatiotemporal blueprint for how the chitin-based pharyngeal cuticle of the nematode Caenorhabditis elegans is built. We demonstrate that the blueprint correctly predicts expression patterns and functional relevance to cuticle development. We find that as larvae prepare to molt, catabolic enzymes are upregulated and the genes that encode chitin synthase, chitin cross-linkers, and homologs of amyloid regulators subsequently peak in expression. 48% of the gene products secreted during the molt are predicted to be intrinsically disordered proteins (IDPs), many of which belong to four distinct families whose transcripts are expressed in overlapping waves. These include the IDPAs, IDPBs, and IDPCs, which are introduced for the first time here. All four families have sequence properties that drive phase separation and we demonstrate phase-separation for one exemplar in vitro. This systematic analysis represents the first blueprint for cuticle construction and highlights the massive contribution that phase-separating materials make to the structure.

Data availability

All source data for the spatiotemporal reconstruction is in the Source data files

Article and author information

Author details

  1. Muntasir Kamal

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Levon Tokmakjian

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Jessica Knox

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Peter Mastrangelo

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Jingxiu Ji

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Hao Cai

    Molecular Medicine Program, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Jakub W Wojciechowski

    Department of Biomedical Engineering, Wroclaw University of Science and Technolog, Wroclaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5289-653X
  8. Michael P Hughes

    Department of Cell and Molecular, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Kristóf Takács

    Institute of Mathematics, Eötvös Loránd University, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  10. Xiaoquan Chu

    Department of Computer Science and Technology, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Jianfeng Pei

    Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Vince Grolmusz

    Institute of Mathematics, Eötvös Loránd University, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9456-8876
  13. Malgorzata Kotulska

    Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  14. Julie Deborah Forman-Kay

    Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8265-972X
  15. Peter J Roy

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    For correspondence
    peter.roy@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2959-2276

Funding

NKFI (127909)

  • Kristóf Takács
  • Vince Grolmusz

National Science Foundation (1616265)

  • Michael P Hughes

National Science Centre, Poland

  • Malgorzata Kotulska

Canadian Institutes of Health Research (376634)

  • Peter J Roy

Canadian Institutes of Health Research (313296)

  • Peter J Roy

National Science and Engineering Council of Canada

  • Jessica Knox

Canada Research Chairs

  • Peter J Roy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Luisa Cochella, Johns Hopkins University School of Medicine, United States

Version history

  1. Preprint posted: March 14, 2022 (view preprint)
  2. Received: April 11, 2022
  3. Accepted: October 11, 2022
  4. Accepted Manuscript published: October 19, 2022 (version 1)
  5. Version of Record published: November 2, 2022 (version 2)

Copyright

© 2022, Kamal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,315
    views
  • 216
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Muntasir Kamal
  2. Levon Tokmakjian
  3. Jessica Knox
  4. Peter Mastrangelo
  5. Jingxiu Ji
  6. Hao Cai
  7. Jakub W Wojciechowski
  8. Michael P Hughes
  9. Kristóf Takács
  10. Xiaoquan Chu
  11. Jianfeng Pei
  12. Vince Grolmusz
  13. Malgorzata Kotulska
  14. Julie Deborah Forman-Kay
  15. Peter J Roy
(2022)
A spatiotemporal reconstruction of the C. elegans pharyngeal cuticle reveals a structure rich in phase-separating proteins
eLife 11:e79396.
https://doi.org/10.7554/eLife.79396

Share this article

https://doi.org/10.7554/eLife.79396

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    F Javier DeHaro-Arbona, Charalambos Roussos ... Sarah Bray
    Research Article

    Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.

    1. Developmental Biology
    Rieko Asai, Vivek N Prakash ... Takashi Mikawa
    Research Article

    Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called ‘polonaise movements’, appears along the midline. Here, through experimental manipulations, we addressed relationships between the polonaise movements and morphogenesis of the primitive streak, the earliest midline structure in amniotes. Suppression of the Wnt/planar cell polarity (PCP) signaling pathway maintains the polonaise movements along a deformed primitive streak. Mitotic arrest leads to diminished extension and development of the primitive streak and maintains the early phase of the polonaise movements. Ectopically induced Vg1, an axis-inducing morphogen, generates the polonaise movements, aligned to the induced midline, but disturbs the stereotypical cell flow pattern at the authentic midline. Despite the altered cell flow, induction and extension of the primitive streak are preserved along both authentic and induced midlines. Finally, we show that ectopic axis-inducing morphogen, Vg1, is capable of initiating the polonaise movements without concomitant PS extension under mitotic arrest conditions. These results are consistent with a model wherein primitive streak morphogenesis is required for the maintenance of the polonaise movements, but the polonaise movements are not necessarily responsible for primitive streak morphogenesis. Our data describe a previously undefined relationship between the large-scale cell flow and midline morphogenesis in gastrulation.