Limited role of generation time changes in driving the evolution of the mutation spectrum in humans

  1. Ziyue Gao
  2. Yulin Zhang
  3. Nathan Cramer
  4. Molly Przeworski
  5. Priya Moorjani  Is a corresponding author
  1. University of Pennsylvania, United States
  2. University of California, Berkeley, United States
  3. Columbia University, United States

Abstract

Recent studies have suggested that the human germline mutation rate and spectrum evolve rapidly. Variation in generation time has been linked to these changes, though its contribution remains unclear. We develop a framework to characterize temporal changes in polymorphisms within and between populations, while controlling for the effects of natural selection and biased gene conversion. Application to the 1000 Genomes Project dataset reveals multiple independent changes that arose after the split of continental groups, including a previously reported, transient elevation in TCC>TTC mutations in Europeans and novel signals of divergence in C>G and T>A mutation rates among population samples. We also find a significant difference between groups sampled in and outside of Africa, in old T>C polymorphisms that predate the out-of-Africa migration. This surprising signal is driven by TpG>CpG mutations, and stems in part from mis-polarized CpG transitions, which are more likely to undergo recurrent mutations. Finally, by relating the mutation spectrum of polymorphisms to parental age effects on de novo mutations, we show that plausible changes in the generation time cannot explain the patterns observed for different mutation types jointly. Thus, other factors--genetic modifiers or environmental exposures--must have had a non-negligible impact on the human mutation landscape.

Data availability

All data generated or analyzed during this study were based on publicly available datasets like the 1000 Genomes Project. Source data for Figures 1-4 contain the numerical data used to generate the figures. Source data for figure 1 is available at the following URL: https://doi.org/10.6078/D19B0H. (Note, For private access prior to publication, the dataset is available at the URL: https://datadryad.org/stash/share/JK1BdqPhl6azkQru6gLTi6_dA-6lobKUxzpUM7mW69Y)

The following previously published data sets were used

Article and author information

Author details

  1. Ziyue Gao

    Department of Genetics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9244-0238
  2. Yulin Zhang

    Center for Computational Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Nathan Cramer

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Molly Przeworski

    Department of Systems Biology, Columbia University, New York, United States
    Competing interests
    Molly Przeworski, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5369-9009
  5. Priya Moorjani

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    moorjani@berkeley.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0947-5673

Funding

National Institutes of Health (R35GM146810)

  • Ziyue Gao

Alfred P. Sloan Foundation

  • Ziyue Gao

National Institutes of Health (R35GM142978)

  • Priya Moorjani

Alfred P. Sloan Foundation

  • Priya Moorjani

National Institutes of Health (GM122975)

  • Molly Przeworski

National Science Foundation (DGE 2146752)

  • Nathan Cramer

Hellman Family Foundation

  • Priya Moorjani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Philipp W Messer, Cornell University, United States

Version history

  1. Preprint posted: June 18, 2022 (view preprint)
  2. Received: June 18, 2022
  3. Accepted: February 2, 2023
  4. Accepted Manuscript published: February 13, 2023 (version 1)
  5. Accepted Manuscript updated: February 15, 2023 (version 2)
  6. Version of Record published: March 14, 2023 (version 3)

Copyright

© 2023, Gao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,634
    views
  • 215
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ziyue Gao
  2. Yulin Zhang
  3. Nathan Cramer
  4. Molly Przeworski
  5. Priya Moorjani
(2023)
Limited role of generation time changes in driving the evolution of the mutation spectrum in humans
eLife 12:e81188.
https://doi.org/10.7554/eLife.81188

Share this article

https://doi.org/10.7554/eLife.81188

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Ryan T Bell, Harutyun Sahakyan ... Eugene V Koonin
    Research Article

    A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.

    1. Evolutionary Biology
    2. Neuroscience
    Daniel Thiel, Luis Alfonso Yañez Guerra ... Gáspár Jékely
    Research Article

    Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) – the most common receptors of bilaterian neuropeptides – but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.