Integrative modeling reveals the molecular architecture of the intraflagellar transport A (IFT-A) complex

  1. Caitlyn L McCafferty  Is a corresponding author
  2. Ophelia Papoulas
  3. Mareike A Jordan
  4. Gabriel Hoogerbrugge
  5. Candice Nichols
  6. Gaia Pigino
  7. David W Taylor
  8. John B Wallingford
  9. Edward M Marcotte  Is a corresponding author
  1. The University of Texas at Austin, United States
  2. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  3. Human Technopole, Italy

Abstract

Intraflagellar transport (IFT) is a conserved process of cargo transport in cilia that is essential for development and homeostasis in organisms ranging from algae to vertebrates. In humans, variants in genes encoding subunits of the cargo-adapting IFT-A and IFT-B protein complexes are a common cause of genetic diseases known as ciliopathies. While recent progress has been made in determining the atomic structure of IFT-B, little is known of the structural biology of IFT-A. Here, we combined chemical cross-linking mass spectrometry and cryo-electron tomography with AlphaFold2-based prediction of both protein structures and interaction interfaces to model the overall architecture of the monomeric six-subunit IFT-A complex, as well as its polymeric assembly within cilia. We define monomer-monomer contacts and membrane-associated regions available for association with transported cargo, and we also use this model to provide insights into the pleiotropic nature of human ciliopathy-associated genetic variants in genes encoding IFT-A subunits. Our work demonstrates the power of integration of experimental and computational strategies both for multi-protein structure determination and for understanding the etiology of human genetic disease.

Data availability

Mass spectrometry proteomics data was deposited in the MassIVE/ProteomeXchange database (113) under accession number PXD032818. Cryo-tomography data was deposited in the Electron Microscopy Data Bank (114) under accession number EMD-26791. IFT-A models were deposited in the PDB-Dev database (115) as well as on Zenodo at doi: 10.5281/zenodo.7222413, along with additional supporting materials, including integrative modeling data and code.

Article and author information

Author details

  1. Caitlyn L McCafferty

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    For correspondence
    clmccafferty@utexas.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Ophelia Papoulas

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mareike A Jordan

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Gabriel Hoogerbrugge

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Candice Nichols

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Gaia Pigino

    Human Technopole, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. David W Taylor

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. John B Wallingford

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Edward M Marcotte

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    For correspondence
    marcotte@utexas.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8808-180X

Funding

National Science Foundation (2019238253)

  • Caitlyn L McCafferty

National Institute of General Medical Sciences (R35GM122480)

  • Edward M Marcotte

National Institute of General Medical Sciences (R35GM138348)

  • David W Taylor

National Institute of Child Health and Human Development (HD085901)

  • John B Wallingford
  • Edward M Marcotte

Army Research Office (W911NF-12-1-0390)

  • Edward M Marcotte

Welch Foundation (F-1515)

  • Edward M Marcotte

Welch Foundation (F-1938)

  • David W Taylor

Max Planck Society

  • Mareike A Jordan
  • Gaia Pigino

Cancer Prevention and Research Institute of Texas (RR160088)

  • David W Taylor

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Suzanne R Pfeffer, Stanford University, United States

Version history

  1. Preprint posted: July 5, 2022 (view preprint)
  2. Received: July 20, 2022
  3. Accepted: November 7, 2022
  4. Accepted Manuscript published: November 8, 2022 (version 1)
  5. Version of Record published: November 18, 2022 (version 2)

Copyright

© 2022, McCafferty et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,992
    views
  • 279
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Caitlyn L McCafferty
  2. Ophelia Papoulas
  3. Mareike A Jordan
  4. Gabriel Hoogerbrugge
  5. Candice Nichols
  6. Gaia Pigino
  7. David W Taylor
  8. John B Wallingford
  9. Edward M Marcotte
(2022)
Integrative modeling reveals the molecular architecture of the intraflagellar transport A (IFT-A) complex
eLife 11:e81977.
https://doi.org/10.7554/eLife.81977

Share this article

https://doi.org/10.7554/eLife.81977

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Claudia D Consalvo, Adedeji M Aderounmu ... Brenda L Bass
    Research Article

    Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1’s helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.