Nuclear m6A reader YTHDC1 promotes muscle stem cell activation/proliferation by regulating mRNA splicing and nuclear export

  1. Yulong Qiao
  2. Qiang Sun
  3. Xiaona Chen
  4. Liangqiang He
  5. Di Wang
  6. Ruibao Su
  7. Yuanchao Xue
  8. Hao Sun  Is a corresponding author
  9. Huating Wang  Is a corresponding author
  1. Chinese University of Hong Kong, China
  2. Chinese Academy of Sciences, China

Abstract

Skeletal muscle stem cells (also known as satellite cells, SCs) are essential for muscle regeneration and the regenerative activities of SCs are intrinsically governed by gene regulatory mechanisms but the post-transcriptional regulation in SCs remains largely unknown. N(6)-methyladenosine (m6A) modification of RNAs is the most pervasive and highly conserved RNA modification in eukaryotic cells and exerts powerful impact on almost all aspects of mRNA processing which is mainly endowed by its binding with m6A reader proteins. Here in this study, we investigate the previously uncharacterized regulatory roles of YTHDC1, a m6A reader in mouse SCs. Our results demonstrate YTHDC1 is an essential regulator of SC activation and proliferation upon acute injury induced muscle regeneration. The induction of YTHDC1 is indispensable for SC activation and proliferation thus inducible YTHDC1 depletion almost abolishes SC regenerative capacity. Mechanistically, transcriptome-wide profiling using LACE-seq in both SCs and mouse C2C12 myoblasts identifies m6A mediated binding targets of YTHDC1. Next, splicing analysis defines splicing mRNA targets of m6A-YTHDC1. Furthermore, nuclear export analysis also leads to identification of potential mRNA export targets of m6A-YTHDC1 in SCs and C2C12 myoblasts and interestingly some mRNAs can be regulated at both splicing and export levels. Lastly, we map YTHDC1 interacting protein partners in myoblasts and unveil a myriad of factors governing mRNA splicing, nuclear export and transcription, among which hnRNPG appears to be a bona fide interacting partner of YTHDC1. Altogether, our findings uncover YTHDC1 as an essential factor controlling SC regenerative ability through multi-faceted gene regulatory mechanisms in mouse myoblast cells.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE210127.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Yulong Qiao

    Department of Chemical Pathology, Chinese University of Hong Kong, Hong Kong, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Qiang Sun

    Department of Orthopaedics and Traumatology, Chinese University of Hong Kong, Hong Kong, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiaona Chen

    Department of Orthopaedics and Traumatology, Chinese University of Hong Kong, Hong Kong, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Liangqiang He

    Department of Chemical Pathology, Chinese University of Hong Kong, Hong Kong, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Di Wang

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Ruibao Su

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yuanchao Xue

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Hao Sun

    Department of Chemical Pathology, Chinese University of Hong Kong, Hong Kong, China
    For correspondence
    haosun@cuhk.edu.hk
    Competing interests
    The authors declare that no competing interests exist.
  9. Huating Wang

    Department of Chemical Pathology, Chinese University of Hong Kong, Hong Kong, China
    For correspondence
    huating.wang@cuhk.edu.hk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5474-2905

Funding

National Natural Science Foundation of China (82172436)

  • Huating Wang

General Research Funds of Hong Kong (14115319,14100620,14106521)

  • Huating Wang

General Research Funds of Hong Kong (14103522,14120420,14120619)

  • Hao Sun

Collaborative Research Fund from RGC of Hong Kong (C6018-19GF)

  • Huating Wang

Theme-based Research Scheme from RGC of Hong Kong (T13-602/21-N)

  • Huating Wang

Area of Excellence Scheme from RGC of Hong Kong (AoE/M-402/20)

  • Huating Wang

Health@InnoHK program launched by Innovation Technology Commission, the Government of the Hong Kong SAR, China (Center for Neuromusculoskeletal Restorative Medicine (CNRM))

  • Huating Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christopher L-H Huang, University of Cambridge, United Kingdom

Ethics

Animal experimentation: All animal handling procedures and protocols were approved by the Animal Experimentation Ethics Committee (AEEC) of CUHK (Ref. No. 19-251-MIS). All animal experiments with iKO mice followed the regulations and guidance of laboratory animals set in CUHK.

Version history

  1. Preprint posted: August 7, 2022 (view preprint)
  2. Received: August 15, 2022
  3. Accepted: March 8, 2023
  4. Accepted Manuscript published: March 9, 2023 (version 1)
  5. Version of Record published: April 11, 2023 (version 2)

Copyright

© 2023, Qiao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,586
    views
  • 354
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yulong Qiao
  2. Qiang Sun
  3. Xiaona Chen
  4. Liangqiang He
  5. Di Wang
  6. Ruibao Su
  7. Yuanchao Xue
  8. Hao Sun
  9. Huating Wang
(2023)
Nuclear m6A reader YTHDC1 promotes muscle stem cell activation/proliferation by regulating mRNA splicing and nuclear export
eLife 12:e82703.
https://doi.org/10.7554/eLife.82703

Share this article

https://doi.org/10.7554/eLife.82703

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.

    1. Cell Biology
    Jun Yang, Shitian Zou ... Xiaochun Bai
    Research Article

    Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.