Spatiotemporal neural dynamics of object recognition under uncertainty in humans

  1. Yuan-hao Wu
  2. Ella Podvalny
  3. Biyu J He  Is a corresponding author
  1. New York University, United States

Abstract

While there is a wealth of knowledge about core object recognition-our ability to recognize clear, high-contrast object images, how the brain accomplishes object recognition tasks under increased uncertainty remains poorly understood. We investigated the spatiotemporal neural dynamics underlying object recognition under increased uncertainty by combining MEG and 7 Tesla fMRI in humans during a threshold-level object recognition task. We observed an early, parallel rise of recognition-related signals across ventral visual and frontoparietal regions that preceded the emergence of category-related information. Recognition-related signals in ventral visual regions were best explained by a two-state representational format whereby brain activity bifurcated for recognized and unrecognized images. By contrast, recognition-related signals in frontoparietal regions exhibited a reduced representational space for recognized images, yet with sharper category information. These results provide a spatiotemporally resolved view of neural activity supporting object recognition under uncertainty, revealing a pattern distinct from that underlying core object recognition.

Data availability

The analysis code, data and code to reproduce all figures can be downloaded athttps://github.com/BiyuHeLab/HLTP_Fusion_Wu2022/tree/submission

Article and author information

Author details

  1. Yuan-hao Wu

    Neuroscience Institute, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5631-5082
  2. Ella Podvalny

    Neuroscience Institute, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Biyu J He

    Neuroscience Institute, New York University, New York, United States
    For correspondence
    biyu.jade.he@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1549-1351

Funding

National Institutes of Health (R01EY032085)

  • Biyu J He

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Huan Luo, Peking University, China

Ethics

Human subjects: Data collection procedures followed protocols approved by the institutional review boards of the intramural research program of NINDS/NIH (protocol #14 N-0002) and NYU Grossman School of Medicine (protocol s15-01323). All participants provided written informed consent.

Version history

  1. Received: November 9, 2022
  2. Preprint posted: November 17, 2022 (view preprint)
  3. Accepted: May 12, 2023
  4. Accepted Manuscript published: May 15, 2023 (version 1)
  5. Version of Record published: May 31, 2023 (version 2)

Copyright

© 2023, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,081
    views
  • 161
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuan-hao Wu
  2. Ella Podvalny
  3. Biyu J He
(2023)
Spatiotemporal neural dynamics of object recognition under uncertainty in humans
eLife 12:e84797.
https://doi.org/10.7554/eLife.84797

Share this article

https://doi.org/10.7554/eLife.84797

Further reading

    1. Neuroscience
    Evan D Vickers, David A McCormick
    Tools and Resources

    The flow of neural activity across the neocortex during active sensory discrimination is constrained by task-specific cognitive demands, movements, and internal states. During behavior, the brain appears to sample from a broad repertoire of activation motifs. Understanding how these patterns of local and global activity are selected in relation to both spontaneous and task-dependent behavior requires in-depth study of densely sampled activity at single neuron resolution across large regions of cortex. In a significant advance toward this goal, we developed procedures to record mesoscale 2-photon Ca2+ imaging data from two novel in vivo preparations that, between them, allow for simultaneous access to nearly all 0f the mouse dorsal and lateral neocortex. As a proof of principle, we aligned neural activity with both behavioral primitives and high-level motifs to reveal the existence of large populations of neurons that coordinated their activity across cortical areas with spontaneous changes in movement and/or arousal. The methods we detail here facilitate the identification and exploration of widespread, spatially heterogeneous neural ensembles whose activity is related to diverse aspects of behavior.

    1. Neuroscience
    Simon Kern, Juliane Nagel ... Gordon B Feld
    Research Article

    Declarative memory retrieval is thought to involve reinstatement of neuronal activity patterns elicited and encoded during a prior learning episode. Furthermore, it is suggested that two mechanisms operate during reinstatement, dependent on task demands: individual memory items can be reactivated simultaneously as a clustered occurrence or, alternatively, replayed sequentially as temporally separate instances. In the current study, participants learned associations between images that were embedded in a directed graph network and retained this information over a brief 8 min consolidation period. During a subsequent cued recall session, participants retrieved the learned information while undergoing magnetoencephalographic recording. Using a trained stimulus decoder, we found evidence for clustered reactivation of learned material. Reactivation strength of individual items during clustered reactivation decreased as a function of increasing graph distance, an ordering present solely for successful retrieval but not for retrieval failure. In line with previous research, we found evidence that sequential replay was dependent on retrieval performance and was most evident in low performers. The results provide evidence for distinct performance-dependent retrieval mechanisms, with graded clustered reactivation emerging as a plausible mechanism to search within abstract cognitive maps.