Fluorescein-based sensors to purify human a-cells for functional and transcriptomic analyses

Abstract

Pancreatic a-cells secrete glucagon, an insulin counter-regulatory peptide hormone critical for the maintenance of glucose homeostasis. Investigation of the function of human a-cells remains a challenge due to the lack of cost-effective purification methods to isolate high-quality a-cells from islets. Here, we use the reaction-based probe diacetylated Zinpyr1 (DA-ZP1) to introduce a novel and simple method for enriching live a-cells from dissociated human islet cells with ~ 95% purity. The a-cells, confirmed by sorting and immunostaining for glucagon, were cultured up to 10 days to form a-pseudoislets. The a-pseudoislets could be maintained in culture without significant loss of viability, and responded to glucose challenge by secreting appropriate levels of glucagon. RNA-sequencing analyses (RNA-seq) revealed that expression levels of key a-cell identity genes were sustained in culture while some of the genes such as DLK1, GSN, SMIM24 were altered in a-pseudoislets in a time-dependent manner. In conclusion, we report a method to sort human primary a-cells with high purity that can be used for downstream analyses such as functional and transcriptional studies.

Data availability

RNA-seq data have been deposited under accession code GSE199412. Further information and requests for resources and reagents should be directed to the corresponding author.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Sevim Kahraman

    Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States
    Competing interests
    Sevim Kahraman, S.K. is an employee of Boehringer Ingelheim Pharmaceuticals, Inc..
  2. Kimitaka Shibue

    Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States
    Competing interests
    No competing interests declared.
  3. Dario F De Jesus

    Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States
    Competing interests
    No competing interests declared.
  4. Hyunki Kim

    Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States
    Competing interests
    No competing interests declared.
  5. Jiang Hu

    Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States
    Competing interests
    No competing interests declared.
  6. Debasish Manna

    Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  7. Bridget K Wagner

    Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  8. Amit Choudhary

    Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  9. Rohit N Kulkarni

    Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States
    For correspondence
    rohit.kulkarni@joslin.harvard.edu
    Competing interests
    Rohit N Kulkarni, is on the Scientific Advisory Board of Novo Nordisk, Biomea and Inversago Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5029-6119

Funding

National Institutes of Health (U01 DK123717)

  • Bridget K Wagner
  • Rohit N Kulkarni

National Institutes of Health (UC4 DK116255)

  • Bridget K Wagner
  • Amit Choudhary
  • Rohit N Kulkarni

National Institutes of Health (R01 067536)

  • Rohit N Kulkarni

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lori Sussel, University of Colorado Anschutz Medical Campus, United States

Version history

  1. Received: November 21, 2022
  2. Preprint posted: November 28, 2022 (view preprint)
  3. Accepted: September 11, 2023
  4. Accepted Manuscript published: September 21, 2023 (version 1)
  5. Version of Record published: October 11, 2023 (version 2)
  6. Version of Record updated: January 12, 2024 (version 3)

Copyright

© 2023, Kahraman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,175
    views
  • 244
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sevim Kahraman
  2. Kimitaka Shibue
  3. Dario F De Jesus
  4. Hyunki Kim
  5. Jiang Hu
  6. Debasish Manna
  7. Bridget K Wagner
  8. Amit Choudhary
  9. Rohit N Kulkarni
(2023)
Fluorescein-based sensors to purify human a-cells for functional and transcriptomic analyses
eLife 12:e85056.
https://doi.org/10.7554/eLife.85056

Share this article

https://doi.org/10.7554/eLife.85056

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Claudia D Consalvo, Adedeji M Aderounmu ... Brenda L Bass
    Research Article

    Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1’s helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.