Genetic interactions affecting human gene expression identified by variance association mapping

  1. Andrew A Brown
  2. Alfonso Buil
  3. Ana Viñuela
  4. Tuuli Lappalainen
  5. Hou-Feng Zheng
  6. John B Richards
  7. Kerrin S Small
  8. Timothy D Spector
  9. Emmanouil T Dermitzakis
  10. Richard Durbin  Is a corresponding author
  1. Wellcome Trust Sanger Institute, United Kingdom
  2. University of Geneva, Switzerland
  3. King's College London, United Kingdom
  4. McGill University, Canada
  5. The Wellcome Trust Sanger Institute, United Kingdom

Abstract

Non-additive interaction between genetic variants, or epistasis, is a possible explanation for the gap between heritability of complex traits and the variation explained by identified genetic loci. Interactions give rise to genotype dependent variance, and therefore the identification of variance quantitative trait loci can be an intermediate step to discover both epistasis and gene by environment effects (GxE). Using RNA-sequence data from lymphoblastoid cell lines (LCLs) from the TwinsUK cohort, we identify a candidate set of 508 variance associated SNPs. Exploiting the twin design we show that GxE plays a role in ~70% of these associations. Further investigation of these loci reveals 57 epistatic interactions that replicated in a smaller dataset, explaining on average 4.3% of phenotypic variance. In 24 cases, more variance is explained by the interaction than their additive contributions. Using molecular phenotypes in this way may provide a route to uncovering genetic interactions underlying more complex traits.

Article and author information

Author details

  1. Andrew A Brown

    Wellcome Trust Sanger Institute, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  2. Alfonso Buil

    University of Geneva, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  3. Ana Viñuela

    King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  4. Tuuli Lappalainen

    University of Geneva, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  5. Hou-Feng Zheng

    McGill University, Montreal, Canada
    Competing interests
    No competing interests declared.
  6. John B Richards

    King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  7. Kerrin S Small

    King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  8. Timothy D Spector

    King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  9. Emmanouil T Dermitzakis

    University of Geneva, Geneva, Switzerland
    Competing interests
    Emmanouil T Dermitzakis, Reviewing editor, eLife.
  10. Richard Durbin

    The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
    For correspondence
    rd@sanger.ac.uk
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Philipp Khaitovich, Partner Institute for Computational Biology, China

Ethics

Human subjects: This project was approved by the ethics committee at St Thomas' Hospital London, where all the biopsies were carried out. Volunteers gave informed consent and signed an approved consent form prior to the biopsy procedure. Volunteers were supplied with an appropriate detailed information sheet regarding the research project and biopsy procedure by post prior to attending for the biopsy. The St. Thomas' Research Ethics Committee (REC) approved on 20th September 2007 the protocol for dissemination of data, including DNA, with the REC reference number RE04/015. On 12th of March of 2008, the St Thomas' REC confirmed this approval extends to expression data.

Version history

  1. Received: August 21, 2013
  2. Accepted: March 13, 2014
  3. Accepted Manuscript published: April 25, 2014 (version 1)
  4. Version of Record published: May 20, 2014 (version 2)

Copyright

© 2014, Brown et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,251
    views
  • 485
    downloads
  • 99
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew A Brown
  2. Alfonso Buil
  3. Ana Viñuela
  4. Tuuli Lappalainen
  5. Hou-Feng Zheng
  6. John B Richards
  7. Kerrin S Small
  8. Timothy D Spector
  9. Emmanouil T Dermitzakis
  10. Richard Durbin
(2014)
Genetic interactions affecting human gene expression identified by variance association mapping
eLife 3:e01381.
https://doi.org/10.7554/eLife.01381

Share this article

https://doi.org/10.7554/eLife.01381

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    F Javier DeHaro-Arbona, Charalambos Roussos ... Sarah Bray
    Research Article

    Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.