The Rho-guanine nucleotide exchange factor PDZ-RhoGEF governs susceptibility to diet-induced obesity and type 2 diabetes

Abstract

Adipose tissue is crucial for the maintenance of energy and metabolic homeostasis and its deregulation can lead to obesity and type II diabetes (T2D). Using gene disruption in the mouse, we discovered a function for a RhoA-specific guanine nucleotide exchange factor PDZ-RhoGEF (Arhgef11) in white adipose tissue biology. While PDZ-RhoGEF was dispensable for a number of RhoA signaling-mediated processes in mouse embryonic fibroblasts, including stress fiber formation and cell migration, it's deletion led to a reduction in their proliferative potential. On a whole organism level, PDZ-RhoGEF deletion resulted in an acute increase in energy expenditure, selectively impaired early adipose tissue development and decreased adiposity in adults. PDZ-RhoGEF-deficient mice were protected from diet-induced obesity and T2D. Mechanistically, PDZ-RhoGEF enhanced insulin/IGF-1 signaling in adipose tissue by controlling ROCK-dependent phosphorylation of the insulin receptor substrate-1 (IRS-1). Our results demonstrate that PDZ-RhoGEF acts as a key determinant of mammalian metabolism and obesity-associated pathologies.

Article and author information

Author details

  1. Ying-Ju Chang

    Princess Margaret Cancer Center, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Scott Pownall

    Princess Margaret Cancer Center, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Thomas Elbenhardt Jensen

    Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Samar Mouaaz

    Princess Margaret Cancer Center, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Warren Foltz

    Spatio-Temporal Targeting and Amplification of Radiation Response Program, Office of Research Trainees, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Lily Zhou

    Princess Margaret Cancer Center, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Nicole Liadis

    Princess Margaret Cancer Center, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Mina Woo

    Toronto General Research Institute, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Zhenyue Hao

    Princess Margaret Cancer Center, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Previn Dutt

    Princess Margaret Cancer Center, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Philip J Bilan

    Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. Amira Klip

    Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  13. Tak Mak

    Princess Margaret Cancer Center, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  14. Vuk Stambolic

    Princess Margaret Cancer Center, University Health Network, Toronto, Canada
    For correspondence
    vuks@uhnresearch.ca
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Amy J Wagers, Harvard University, United States

Ethics

Animal experimentation: All animal work was conducted according to the Policies and Guidelines of the Canadian Council on Animal Care and the Province of Ontario's Animals for Research Act. The protocol was approved by the Animal Care Committee of Princess Margaret Cancer Center at University Health Network (permit Number:933 and 2176).

Version history

  1. Received: December 13, 2014
  2. Accepted: October 25, 2015
  3. Accepted Manuscript published: October 29, 2015 (version 1)
  4. Version of Record published: December 23, 2015 (version 2)

Copyright

© 2015, Chang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,744
    views
  • 349
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ying-Ju Chang
  2. Scott Pownall
  3. Thomas Elbenhardt Jensen
  4. Samar Mouaaz
  5. Warren Foltz
  6. Lily Zhou
  7. Nicole Liadis
  8. Mina Woo
  9. Zhenyue Hao
  10. Previn Dutt
  11. Philip J Bilan
  12. Amira Klip
  13. Tak Mak
  14. Vuk Stambolic
(2015)
The Rho-guanine nucleotide exchange factor PDZ-RhoGEF governs susceptibility to diet-induced obesity and type 2 diabetes
eLife 4:e06011.
https://doi.org/10.7554/eLife.06011

Share this article

https://doi.org/10.7554/eLife.06011

Further reading

    1. Cell Biology
    Jun Yang, Shitian Zou ... Xiaochun Bai
    Research Article

    Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.

    1. Cancer Biology
    2. Cell Biology
    Stefanie Schmieder
    Insight

    Mutations in the gene for β-catenin cause liver cancer cells to release fewer exosomes, which reduces the number of immune cells infiltrating the tumor.