Synaptic activity regulates AMPA receptor trafficking through different recycling pathways

  1. Ning Zheng
  2. Okunola Jeyifous  Is a corresponding author
  3. Charlotte Munro
  4. Johanna M Montgomery
  5. William N Green
  1. University of Chicago, United States
  2. University of Auckland, New Zealand

Abstract

Changes in glutamatergic synaptic strength in brain are dependent on AMPA-type glutamate receptor (AMPAR) recycling, which is assumed to occur through a single local pathway. Here we present evidence that AMPAR recycling occurs through different pathways regulated by synaptic activity. Without synaptic stimulation, most AMPARs recycled in dynamin-independent endosomes containing the GTPase, Arf6. Few AMPARs recycled in dynamin-dependent endosomes labeled by transferrin receptors (TfRs). AMPAR recycling was blocked by alterations in the GTPase, TC10, which co-localized with Arf6 endosomes. TC10 mutants that reduced AMPAR recycling had no effect on increased AMPAR levels with long-term potentiation (LTP) and little effect on decreased AMPAR levels with long-term depression. However, internalized AMPAR levels in TfR-containing recycling endosomes increased after LTP, indicating increased AMPAR recycling through the dynamin-dependent pathway with synaptic plasticity. LTP-induced AMPAR endocytosis is inconsistent with local recycling as a source of increased surface receptors, suggesting AMPARs are trafficked from other sites.

Article and author information

Author details

  1. Ning Zheng

    Department of Neurobiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Okunola Jeyifous

    Department of Neurobiology, University of Chicago, Chicago, United States
    For correspondence
    ojeyifou@bsd.uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
  3. Charlotte Munro

    Department of Physiology, University of Auckland, Auckland, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  4. Johanna M Montgomery

    Department of Physiology, University of Auckland, Auckland, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  5. William N Green

    Department of Neurobiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Reinhard Jahn, Max Planck Institute for Biophysical Chemistry, Germany

Ethics

Animal experimentation: We followed AVMA guidelines to prevent pain and suffering of animals, and only used the minimum number of animals necessary to obtain conclusions in our experiments. Any pain, discomfort, or distress associated with the surgical procedures was prevented by the administration of the volatile anesthetic, Isoflurane. All animal procedures have been approved by the University of Chicago Institutional Animal Care and Use Committee (IACUC/ACUP protocol #72016) and are in accordance with the recommendations of the Panel on Euthanasia of the American Veterinary Medical Association.

Version history

  1. Received: February 5, 2015
  2. Accepted: May 13, 2015
  3. Accepted Manuscript published: May 13, 2015 (version 1)
  4. Version of Record published: June 2, 2015 (version 2)

Copyright

© 2015, Zheng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,763
    views
  • 976
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ning Zheng
  2. Okunola Jeyifous
  3. Charlotte Munro
  4. Johanna M Montgomery
  5. William N Green
(2015)
Synaptic activity regulates AMPA receptor trafficking through different recycling pathways
eLife 4:e06878.
https://doi.org/10.7554/eLife.06878

Share this article

https://doi.org/10.7554/eLife.06878

Further reading

    1. Cell Biology
    Jun Yang, Shitian Zou ... Xiaochun Bai
    Research Article

    Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.

    1. Cancer Biology
    2. Cell Biology
    Stefanie Schmieder
    Insight

    Mutations in the gene for β-catenin cause liver cancer cells to release fewer exosomes, which reduces the number of immune cells infiltrating the tumor.