Loss of neurofibromin Ras-GAP activity enhances the formation of cardiac blood islands in murine embryos

  1. Amanda D Yzaguirre
  2. Arun Padmanabhan
  3. Eric D de Groh
  4. Kurt A Engleka
  5. Jun Li
  6. Nancy A Speck
  7. Jonathan A Epstein  Is a corresponding author
  1. University of Pennsylvania, United States
  2. Harvard Medical School, United States
  3. Medpace Inc., United States

Abstract

Type I Neurofibromatosis (NF1) is caused by mutations in the NF1 gene encoding neurofibromin. Neurofibromin exhibits Ras GTPase activating protein (Ras-GAP) activity that is thought to mediate cellular functions relevant to disease phenotypes. Loss of murine Nf1 results in embryonic lethality due to heart defects, while mice with monoallelic loss of function mutations, or with tissue-specific inactivation have been used to model NF1. Here, we characterize previously unappreciated phenotypes in Nf1-/- embryos, which are inhibition of hemogenic endothelial specification in the dorsal aorta, enhanced yolk sac hematopoiesis, and exuberant cardiac blood island formation. We show that a missense mutation engineered into the active site of the Ras-GAP domain is sufficient to reproduce ectopic blood island formation, cardiac defects and overgrowth of neural crest-derived structures seen in Nf1-/- embryos. These findings demonstrate a role for Ras-GAP activity in suppressing hemogenic potential of the heart, and restricting growth of neural crest-derived tissues.

Article and author information

Author details

  1. Amanda D Yzaguirre

    Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Arun Padmanabhan

    Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Eric D de Groh

    Medpace Inc., Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kurt A Engleka

    Cardiovascular Institute, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jun Li

    Cardiovascular Institute, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nancy A Speck

    Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jonathan A Epstein

    Cardiovascular Institute, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, University of Pennsylvania, Philadelphia, United States
    For correspondence
    epsteinj@upenn.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Kevin Shannon, University of California, San Francisco, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations inthe Guide for the Care and Use of Laboratory Animals of the NationalInstitutes of Health. All of the animals were handled according toapproved institutional animal care and use committee (IACUC) protocols(#803789 and #803317) of the University of Pennsylvania.

Version history

  1. Received: March 30, 2015
  2. Accepted: October 12, 2015
  3. Accepted Manuscript published: October 13, 2015 (version 1)
  4. Version of Record published: December 8, 2015 (version 2)

Copyright

© 2015, Yzaguirre et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,993
    views
  • 349
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amanda D Yzaguirre
  2. Arun Padmanabhan
  3. Eric D de Groh
  4. Kurt A Engleka
  5. Jun Li
  6. Nancy A Speck
  7. Jonathan A Epstein
(2015)
Loss of neurofibromin Ras-GAP activity enhances the formation of cardiac blood islands in murine embryos
eLife 4:e07780.
https://doi.org/10.7554/eLife.07780

Share this article

https://doi.org/10.7554/eLife.07780

Further reading

    1. Cell Biology
    Jun Yang, Shitian Zou ... Xiaochun Bai
    Research Article

    Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.

    1. Cancer Biology
    2. Cell Biology
    Stefanie Schmieder
    Insight

    Mutations in the gene for β-catenin cause liver cancer cells to release fewer exosomes, which reduces the number of immune cells infiltrating the tumor.