The vacuole/lysosome is required for cell-cycle progression

  1. Yui Jin
  2. Lois S Weisman  Is a corresponding author
  1. University of Michigan, United States

Abstract

Organelles are distributed to daughter cells, via inheritance pathways. However, it is unclear whether there are mechanisms beyond inheritance, which ensure that organelles are present in all cells. Here we present the unexpected finding that the yeast vacuole plays a positive essential role in initiation of the cell-cycle. When inheritance fails, a new vacuole is generated. We show that this occurs prior to the next cell-cycle, and gain insight into this alternative pathway. Moreover, we find that a combination of a defect in inheritance with an acute block in the vacuole biogenesis results in the loss of a functional vacuole and a specific arrest of cells in early G1 phase. Furthermore, this role for the vacuole in cell-cycle progression requires an intact TORC1-SCH9 pathway that can only signal from a mature vacuole. These mechanisms may serve as a checkpoint for the presence of the vacuole/lysosome.

Article and author information

Author details

  1. Yui Jin

    Life Sciences Institute, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lois S Weisman

    Life Sciences Institute, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
    For correspondence
    lweisman@umich.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Chris G Burd, Yale University, United States

Version history

  1. Received: April 17, 2015
  2. Accepted: August 29, 2015
  3. Accepted Manuscript published: August 31, 2015 (version 1)
  4. Version of Record published: September 29, 2015 (version 2)

Copyright

© 2015, Jin & Weisman

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,940
    views
  • 1,007
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yui Jin
  2. Lois S Weisman
(2015)
The vacuole/lysosome is required for cell-cycle progression
eLife 4:e08160.
https://doi.org/10.7554/eLife.08160

Share this article

https://doi.org/10.7554/eLife.08160

Further reading

    1. Cell Biology
    Jun Yang, Shitian Zou ... Xiaochun Bai
    Research Article

    Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.

    1. Cancer Biology
    2. Cell Biology
    Stefanie Schmieder
    Insight

    Mutations in the gene for β-catenin cause liver cancer cells to release fewer exosomes, which reduces the number of immune cells infiltrating the tumor.