GGGGCC microsatellite RNA is neuritically localized, induces branching defects, and perturbs transport granule function

  1. Alondra Schweizer Burguete
  2. Sandra Almeida
  3. Fen-Biao Gao
  4. Robert Kalb
  5. Michael R Akins
  6. Nancy M Bonini  Is a corresponding author
  1. University of Pennsylvania, United States
  2. University of Massachusetts Medical School, United States
  3. University of Pennsylvania School of Medicine, United States
  4. Drexel University, United States

Abstract

Microsatellite expansions are the leading cause of numerous neurodegenerative disorders. Here we demonstrate that GGGGCC and CAG microsatellite repeat RNAs associated with C9orf72 in ALS/FTD and with polyglutamine diseases, respectively, localize to neuritic granules that undergo active transport into distal neuritic segments. In cultured mammalian spinal cord neurons, the presence of neuritic GGGGCC repeat RNA correlates with neuronal branching defects and the repeat RNA localizes to granules that label with FMRP, a transport granule component. Using a Drosophila GGGGCC expansion disease model, we characterize dendritic branching defects that are modulated by FMRP and Orb2. The human orthologues of these modifiers are misregulated in induced pluripotent stem cell-differentiated neurons from GGGGCC expansion carriers. These data suggest that expanded repeat RNAs interact with the mRNA transport and translation machinery, causing transport granule dysfunction. This could be a novel mechanism contributing to the neuronal defects associated with C9orf72 and other microsatellite expansion diseases.

Article and author information

Author details

  1. Alondra Schweizer Burguete

    Department of Biology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sandra Almeida

    Department of Neurology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Fen-Biao Gao

    Department of Neurology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Robert Kalb

    Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael R Akins

    Department of Biology, Drexel University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nancy M Bonini

    Department of Biology, University of Pennsylvania, Philadelphia, United States
    For correspondence
    nbonini@sas.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Robert H Singer, Albert Einstein College of Medicine, United States

Ethics

Animal experimentation: The studies with animal tissue were performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#597) of Children's Hospital of Philadelphia. The human stem cell studies were performed with approval by the Institutional Biosafety Committee, protocol number I-435-10, of the University of Massachusetts Medical School, Worcester, MA.

Version history

  1. Received: May 21, 2015
  2. Accepted: November 30, 2015
  3. Accepted Manuscript published: December 9, 2015 (version 1)
  4. Accepted Manuscript updated: December 15, 2015 (version 2)
  5. Version of Record published: February 4, 2016 (version 3)

Copyright

© 2015, Schweizer Burguete et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,996
    views
  • 989
    downloads
  • 74
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alondra Schweizer Burguete
  2. Sandra Almeida
  3. Fen-Biao Gao
  4. Robert Kalb
  5. Michael R Akins
  6. Nancy M Bonini
(2015)
GGGGCC microsatellite RNA is neuritically localized, induces branching defects, and perturbs transport granule function
eLife 4:e08881.
https://doi.org/10.7554/eLife.08881

Share this article

https://doi.org/10.7554/eLife.08881

Further reading

    1. Cancer Biology
    2. Cell Biology
    Stefanie Schmieder
    Insight

    Mutations in the gene for β-catenin cause liver cancer cells to release fewer exosomes, which reduces the number of immune cells infiltrating the tumor.

    1. Cell Biology
    2. Neuroscience
    Mariana I Tsap, Andriy S Yatsenko ... Halyna R Shcherbata
    Research Article Updated

    Mutations in Drosophila Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.