Coverage and system efficiencies of insecticide-treated nets in Africa from 2000 to 2017

  1. Samir Bhatt  Is a corresponding author
  2. Daniel J Weiss
  3. Bonnie Mappin
  4. Ursula Dalrymple
  5. Ewan Cameron
  6. Donal Bisanzio
  7. David L Smith
  8. Catherine L Moyes
  9. Andrew J Tatem
  10. Michael Lynch
  11. Cristin A Fergus
  12. Joshua Yukich
  13. Adam Bennett
  14. Thomas P Eisele
  15. Jan Kolaczinski
  16. Richard E Cibulskis
  17. Simon I Hay
  18. Peter W Gething
  1. University of Oxford, United Kingdom
  2. National Institutes of Health, United States
  3. World Health Organization, Switzerland
  4. Tulane University School of Public Health and Tropical Medicine, United States
  5. University of California, San Francisco, United States
  6. The Global Fund to Fight AIDS, Tuberculosis and Malaria, Switzerland

Abstract

Insecticide-treated nets (ITNs) for malaria control are widespread but coverage remains inadequate. We developed a Bayesian model using data from 102 national surveys, triangulated against delivery data and distribution reports, to generate year-by-year estimates of four ITN coverage indicators. We explored the impact of two potential 'inefficiencies': uneven net distribution among households and rapid rates of net loss from households. We estimated that, in 2013, 21% (17%-26%) of ITNs were over-allocated and this has worsened over time as overall net provision has increased. We estimated that rates of ITN loss from households are more rapid than previously thought, with 50% lost after 23 (20-28) months. We predict that the current estimate of 920 million additional ITNs required to achieve universal coverage would in reality yield a lower level of coverage (77% population access). By improving efficiency, however, the 920 million ITNs could yield population access as high as 95%.

Article and author information

Author details

  1. Samir Bhatt

    Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, Oxford, United Kingdom
    For correspondence
    bhattsamir@gmail.com
    Competing interests
    No competing interests declared.
  2. Daniel J Weiss

    Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  3. Bonnie Mappin

    Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Ursula Dalrymple

    Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  5. Ewan Cameron

    Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. Donal Bisanzio

    Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  7. David L Smith

    Fogarty International Center, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  8. Catherine L Moyes

    Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  9. Andrew J Tatem

    Fogarty International Center, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  10. Michael Lynch

    Global Malaria Programme, World Health Organization, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  11. Cristin A Fergus

    Global Malaria Programme, World Health Organization, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  12. Joshua Yukich

    Center for Applied Malaria Research and Evaluation, Department of Global Health Systems and Development, Tulane University School of Public Health and Tropical Medicine, New Orleans, United States
    Competing interests
    No competing interests declared.
  13. Adam Bennett

    Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  14. Thomas P Eisele

    Center for Applied Malaria Research and Evaluation, Department of Global Health Systems and Development, Tulane University School of Public Health and Tropical Medicine, New Orleans, United States
    Competing interests
    No competing interests declared.
  15. Jan Kolaczinski

    Strategy, Investment and Impact Division, The Global Fund to Fight AIDS, Tuberculosis and Malaria, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  16. Richard E Cibulskis

    Global Malaria Programme, World Health Organization, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  17. Simon I Hay

    Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    Simon I Hay, Reviewing editor, eLife.
  18. Peter W Gething

    Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Catherine Kyobutungi, Africa Population Health Research Center, Kenya

Version history

  1. Received: June 25, 2015
  2. Accepted: November 26, 2015
  3. Accepted Manuscript published: December 29, 2015 (version 1)
  4. Version of Record published: February 8, 2016 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,186
    views
  • 663
    downloads
  • 127
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samir Bhatt
  2. Daniel J Weiss
  3. Bonnie Mappin
  4. Ursula Dalrymple
  5. Ewan Cameron
  6. Donal Bisanzio
  7. David L Smith
  8. Catherine L Moyes
  9. Andrew J Tatem
  10. Michael Lynch
  11. Cristin A Fergus
  12. Joshua Yukich
  13. Adam Bennett
  14. Thomas P Eisele
  15. Jan Kolaczinski
  16. Richard E Cibulskis
  17. Simon I Hay
  18. Peter W Gething
(2015)
Coverage and system efficiencies of insecticide-treated nets in Africa from 2000 to 2017
eLife 4:e09672.
https://doi.org/10.7554/eLife.09672

Share this article

https://doi.org/10.7554/eLife.09672

Further reading

    1. Epidemiology and Global Health
    Xiaoxin Yu, Roger S Zoh ... David B Allison
    Review Article

    We discuss 12 misperceptions, misstatements, or mistakes concerning the use of covariates in observational or nonrandomized research. Additionally, we offer advice to help investigators, editors, reviewers, and readers make more informed decisions about conducting and interpreting research where the influence of covariates may be at issue. We primarily address misperceptions in the context of statistical management of the covariates through various forms of modeling, although we also emphasize design and model or variable selection. Other approaches to addressing the effects of covariates, including matching, have logical extensions from what we discuss here but are not dwelled upon heavily. The misperceptions, misstatements, or mistakes we discuss include accurate representation of covariates, effects of measurement error, overreliance on covariate categorization, underestimation of power loss when controlling for covariates, misinterpretation of significance in statistical models, and misconceptions about confounding variables, selecting on a collider, and p value interpretations in covariate-inclusive analyses. This condensed overview serves to correct common errors and improve research quality in general and in nutrition research specifically.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Clara Akpan
    Insight

    Systematically tracking and analysing reproductive loss in livestock helps with efforts to safeguard the health and productivity of food animals by identifying causes and high-risk areas.