Fcp1 phosphatase controls Greatwall kinase to promote PP2A-B55 activation and mitotic progression

  1. Rosa Della Monica
  2. Roberta Visconti
  3. Nando Cervone
  4. Angela Flavia Serpico
  5. Domenico Grieco  Is a corresponding author
  1. CEINGE Biotecnologie Avanzate, Italy
  2. Consiglio Nazionale delle Ricerche, Italy

Abstract

During cell division, progression through mitosis is driven by a protein phosphorylation wave. This wave namely depends on an activation-inactivation cycle of cyclin B-dependent kinase (Cdk) 1 while activities of major protein phosphatases, like PP1 and PP2A, appear directly or indirectly repressed by Cdk1. However, how Cdk1 inactivation is coordinated with reactivation of major phosphatases at mitosis exit still lacks substantial knowledge. We show here that activation of PP2A-B55, a major mitosis exit phosphatase, required the phosphatase Fcp1 downstream Cdk1 inactivation in human cells. During mitosis exit, Fcp1 bound Greatwall (Gwl), a Cdk1-stimulated kinase that phosphorylates Ensa/ARPP19 and converts these proteins into potent PP2A-B55 inhibitors during mitosis onset, and dephosphorylated it at Cdk1 phosphorylation sites. Fcp1-catalyzed dephosphorylation drastically reduced Gwl kinase activity towards Ensa/ARPP19 promoting PP2A-B55 activation. Thus, Fcp1 coordinates Cdk1 and Gwl inactivation to derepress PP2A-B55, generating a dephosphorylation switch that drives mitosis progression.

Article and author information

Author details

  1. Rosa Della Monica

    CEINGE Biotecnologie Avanzate, Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Roberta Visconti

    Istituto per l'endocrinologia e l'oncologia Gaetano Salvatore"", Consiglio Nazionale delle Ricerche, Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Nando Cervone

    CEINGE Biotecnologie Avanzate, Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Angela Flavia Serpico

    CEINGE Biotecnologie Avanzate, Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Domenico Grieco

    CEINGE Biotecnologie Avanzate, Naples, Italy
    For correspondence
    domenico.grieco@unina.it
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Tony Hunter, Salk Institute, United States

Version history

  1. Received: July 29, 2015
  2. Accepted: December 14, 2015
  3. Accepted Manuscript published: December 14, 2015 (version 1)
  4. Version of Record published: January 29, 2016 (version 2)

Copyright

© 2015, Della Monica et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,269
    views
  • 399
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rosa Della Monica
  2. Roberta Visconti
  3. Nando Cervone
  4. Angela Flavia Serpico
  5. Domenico Grieco
(2015)
Fcp1 phosphatase controls Greatwall kinase to promote PP2A-B55 activation and mitotic progression
eLife 4:e10399.
https://doi.org/10.7554/eLife.10399

Share this article

https://doi.org/10.7554/eLife.10399

Further reading

    1. Cancer Biology
    2. Cell Biology
    Stefanie Schmieder
    Insight

    Mutations in the gene for β-catenin cause liver cancer cells to release fewer exosomes, which reduces the number of immune cells infiltrating the tumor.

    1. Cell Biology
    2. Neuroscience
    Mariana I Tsap, Andriy S Yatsenko ... Halyna R Shcherbata
    Research Article Updated

    Mutations in Drosophila Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.