Bistability of a coupled Aurora B kinase-phosphatase system in cell division

  1. Anatoly V Zaytsev
  2. Dario Segura-Peña
  3. Maxim Godzi
  4. Abram Calderon
  5. Edward R Ballister
  6. Rumen Stamatov
  7. Alyssa M Mayo
  8. Laura Peterson
  9. Ben E Black
  10. Fazly I Ataullakhanov
  11. Michael A Lampson
  12. Ekaterina L Grishchuk  Is a corresponding author
  1. University of Pennsylvania, United States
  2. Massachusetts Institute of Technology, United States
  3. Russian Academy of Sciences, Russia

Abstract

Aurora B kinase, a key regulator of cell division, localizes to specific cellular locations, but the regulatory mechanisms responsible for phosphorylation of substrates located remotely from kinase enrichment sites are unclear. Here, we provide evidence that this activity at a distance depends on both sites of high kinase concentration and the bistability of a coupled kinase-phosphatase system. We reconstitute this bistable behavior and hysteresis using purified components to reveal co-existence of distinct high and low Aurora B activity states, sustained by a two-component kinase autoactivation mechanism. Furthermore, we demonstrate these non-linear regimes in live cells using a FRET-based phosphorylation sensor, and provide a mechanistic theoretical model for spatial regulation of Aurora B phosphorylation. We propose that bistability of an Aurora B-phosphatase system underlies formation of spatial phosphorylation patterns, which are generated and spread from sites of kinase autoactivation, thereby regulating cell division.

Article and author information

Author details

  1. Anatoly V Zaytsev

    Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Dario Segura-Peña

    Department of Biology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Maxim Godzi

    Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Abram Calderon

    Department of Biology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Edward R Ballister

    Department of Biology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Rumen Stamatov

    Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Alyssa M Mayo

    Department of Biology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Laura Peterson

    Department of Biology, Department of Chemistry, Massachusetts Institute of Technology, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ben E Black

    Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Fazly I Ataullakhanov

    Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
    Competing interests
    The authors declare that no competing interests exist.
  11. Michael A Lampson

    Department of Biology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Ekaterina L Grishchuk

    Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    For correspondence
    gekate@mail.med.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jon Pines, The Gurdon Institute, United Kingdom

Version history

  1. Received: August 5, 2015
  2. Accepted: January 13, 2016
  3. Accepted Manuscript published: January 14, 2016 (version 1)
  4. Version of Record published: March 11, 2016 (version 2)

Copyright

© 2016, Zaytsev et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,558
    views
  • 846
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anatoly V Zaytsev
  2. Dario Segura-Peña
  3. Maxim Godzi
  4. Abram Calderon
  5. Edward R Ballister
  6. Rumen Stamatov
  7. Alyssa M Mayo
  8. Laura Peterson
  9. Ben E Black
  10. Fazly I Ataullakhanov
  11. Michael A Lampson
  12. Ekaterina L Grishchuk
(2016)
Bistability of a coupled Aurora B kinase-phosphatase system in cell division
eLife 5:e10644.
https://doi.org/10.7554/eLife.10644

Share this article

https://doi.org/10.7554/eLife.10644

Further reading

    1. Cell Biology
    2. Neuroscience
    Mariana I Tsap, Andriy S Yatsenko ... Halyna R Shcherbata
    Research Article Updated

    Mutations in Drosophila Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.

    1. Cancer Biology
    2. Cell Biology
    Dongyue Jiao, Huiru Sun ... Kun Gao
    Research Article

    Enhanced protein synthesis is a crucial molecular mechanism that allows cancer cells to survive, proliferate, metastasize, and develop resistance to anti-cancer treatments, and often arises as a consequence of increased signaling flux channeled to mRNA-bearing eukaryotic initiation factor 4F (eIF4F). However, the post-translational regulation of eIF4A1, an ATP-dependent RNA helicase and subunit of the eIF4F complex, is still poorly understood. Here, we demonstrate that IBTK, a substrate-binding adaptor of the Cullin 3-RING ubiquitin ligase (CRL3) complex, interacts with eIF4A1. The non-degradative ubiquitination of eIF4A1 catalyzed by the CRL3IBTK complex promotes cap-dependent translational initiation, nascent protein synthesis, oncogene expression, and cervical tumor cell growth both in vivo and in vitro. Moreover, we show that mTORC1 and S6K1, two key regulators of protein synthesis, directly phosphorylate IBTK to augment eIF4A1 ubiquitination and sustained oncogenic translation. This link between the CRL3IBTK complex and the mTORC1/S6K1 signaling pathway, which is frequently dysregulated in cancer, represents a promising target for anti-cancer therapies.